“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知函数 \(f\left( x \right) = \frac{{{e^x}}}{x} - \ln x + x - a\)



证明:若 \(f\left( x \right)\) 有两个零点 \({{x}_{1}},{{x}_{2}}\) ,则 \({x_1}{x_2} < 1\) 




知识点:第五章 一元函数的导数及其应用


参考答案:由题知, \(f\left( x \right)\) 一个零点小于 1,一个零点大于 1

不妨设 \({x_1} < 1 < {x_2}\)

要证 \({x_1}{x_2} < 1\),即证 \({x_1} < \frac{1}{{{x_2}}}\)

因为 \({{x}_{1}},\frac {1} {{x}_{2}}\in (0,1)\), 即证 \(f\left( {{x_1}} \right) > f\left( {\frac{1}{{{x_2}}}} \right)\)

因为 \(f\left( {{x_1}} \right) = f\left( {{x_2}} \right)\), 即证 \(f\left( {{x_2}} \right) > f\left( {\frac{1}{{{x_2}}}} \right)\)

设\(g\left ( {x} \right )=f\left ( {x} \right )-f\left ( {\frac {1} {x}} \right )\left ( {x>1} \right )\),则\(g'\left ( {x} \right )=f'\left ( {x} \right )-\frac {1} {{x}^{2}}f'\left ( {\frac {1} {x}} \right )=\frac {\left ( {x-1} \right )\left ( {{e}^{x}+x-x{e}^{\frac {1} {x}}-1} \right )} {{x}^{2}}\)

下证: \(h\left ( {x} \right )={e}^{x}+x-x{e}^{\frac {1} {x}}-1>0\left ( {x>1} \right )\)


\({h}^{'}\left ( {x} \right )={e}^{x}+1-{e}^{\frac {1} {x}}+x{e}^{\frac {1} {x}}>0\) ,所以 \(h\left ( {x} \right )>h\left ( {1} \right )=0\)即 \(g'(x) > 0\)

所以 \(g(x)\) 在 \((1,+\infty )\) 单调递增

即 \(g(x) > g(1) = 0\) 即证

法二:令\(t=\frac {{e}^{x}} {x}\),\(f\left ( {x} \right )=\frac {{e}^{x}} {x}-\ln {x+x-a=\frac {{e}^{x}} {x}}+\ln {\frac {{e}^{x}} {x}}-a\) 有两个零点等价于 \(t-\ln {t-a=}0\) 有两个零点

又\(\ln {t}=x-\ln {x}\),则\(\left \{ \begin{gathered} {\ln {t}={x}_{1}-\ln {{x}_{1}}} \\ {\ln {t}={x}_{2}-\ln {{x}_{2}}} \end{gathered} \right .\),所以\({x}_{1}-\ln {{x}_{1}}={x}_{2}-\ln {{x}_{2}}\)

由对数均值不等式可得\(\sqrt {{x}_{1}{x}_{2}}<\frac {{x}_{1}{-x}_{2}} {\ln {{x}_{1}-\ln {{x}_{2}}}}=1\),即 \({x_1}{x_2} < 1\) .

进入考试题库