“微信扫一扫”进入题库练习及模拟考试
已知函数
设
参考答案:证明:由题意可知, \(g'(x) = \frac{2}{x} + 2bx - 2 = \frac{{2b{x^2} - 2x + 2}}{x}\) ,
∵ \(g(x)\) 有两个极值点 \({x_1}\),\({x_2}({x_1} < {x_2})\),
∴ \({x_1}\),\({x_2}\) 是 \(2b{x^2} - 2x + 2 = 0\) 的两个根,则 \(\left\{ {\begin{array}{*{20}{l}} {{x_1} + {x_2} = \frac{1}{b}} \\ {{x_1}{x_2} = \frac{1}{b}} \end{array}} \right.\),
∴\(g({x_1}) - g({x_2}) = ({\rm{ln}}x_1^2 + bx_1^2 - 2{x_1}) - ({\rm{ln}}x_2^2 + bx_2^2 - 2{x_2})\)\( = 2{\rm{ln}}\frac{{{x_1}}}{{{x_2}}} + b(x_1^2 - x_2^2) - 2({x_1} - {x_2})\)\( = 2{\rm{ln}}\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_1}^2 - {x_2}^2}}{{{x_1} + {x_2}}} - 2({x_1} - {x_2})\)
\( = 2{\rm{ln}}\frac{{{x_1}}}{{{x_2}}} - ({x_1} - {x_2})\),
∴要证 \(g({x_1}) - g({x_2}) < (2b - 1)({x_1} - {x_2})\) ,即证 \(2{\rm{ln}}\frac{{{x_1}}}{{{x_2}}} - ({x_1} - {x_2}) < (2b - 1)({x_1} - {x_2})\) ,
即证 \({\rm{ln}}\frac{{{x_1}}}{{{x_2}}} < b({x_1} - {x_2})\) ,即证 \({\rm{ln}}\frac{{{x_1}}}{{{x_2}}} < \frac{{{x_1} - {x_2}}}{{{x_1} + {x_2}}}\) ,即证 \({\rm{ln}}\frac{{{x_1}}}{{{x_2}}} < \frac{{\frac{{{x_1}}}{{{x_2}}} - 1}}{{\frac{{{x_1}}}{{{x_2}}} + 1}}\) ,
令 \(t = \frac{{{x_1}}}{{{x_2}}}(0 < t < 1)\) ,则证明 \({\rm{ln}}t < \frac{{t - 1}}{{t + 1}}\) ,令 \(h(t) = {\rm{ln}}t - \frac{{t - 1}}{{t + 1}}\) ,则 \({h^\prime }(t) = \frac{{{t^2} + 1}}{{t{{(t + 1)}^2}}} > 0\),
∴ \(h(t)\) 在 \((0,1)\) 上单调递增,
则 \(h(t) < h\left( 1 \right) = 0\) ,即 \({\rm{ln}}t < \frac{{t - 1}}{{t + 1}}\) ,所以原不等式 \(g({x_1}) - g({x_2}) < (2b - 1)({x_1} - {x_2})\) 成立.