“微信扫一扫”进入考试题库练习及模拟考试

高中数学选择性必修 第二册(381题)


第361题



参考答案:见解析


解析:


解:(I) \( f\left(x\right)\) 的定义域为 \(\left ( {0,+\infty } \right ){,f}^{\, '}\left ( {x} \right )=2{e}^{2x}-\frac {a} {x}(x>0)\) .



当 \( a\)≤0 时, \({f}^{\, '}\left ( {x} \right )>0,{f}^{\, '}\left ( {x} \right )\) 没有零点;



当 \( a>0\) 时,因为 \( {e}^{2x}\) 单调递增, \( -\frac{a}{x}\) 单调递减,所以 \({f}^{\, '}\left ( {x} \right )\) 在 \( \left(0,+\infty \right)\) 单调递增,又 \({f}^{\, '}\left ( {a} \right )>0\) ,当\(b\)满足 \(0<b<\frac {a} {4}\) 且 \(b<\frac {1} {4}\) 时, \({f}^{\, '}\left ( {b} \right )<0\) ,故当 \( a\)<0 时 \({f}^{\, '}\left ( {x} \right )\) 存在唯一零点.



(II)由(I),可设 \({f}^{\, '}\left ( {x} \right )\) 在 \( \left(0,+\infty \right)\) 的唯一零点为 \( {x}_{0}\) ,当 \( x\in \left(0,{x}_{0}\right)\) 时,\({f}^{\, '}\left ( {x} \right )<0\)



当 \( x\in \left({x}_{0},+\infty \right)\) 时, \({f}^{\, '}\left ( {x} \right )>0\),故 \( f\left(x\right)\) 在 \( \left(0,+\infty \right)\) 单调递减,在 \( \left({x}_{0},+\infty \right)\) 单调递增,所以 \( x={x}_{0}\) 时, \( f\left(x\right)\) 取得最小值,最小值为 \( f\left({x}_{0}\right)\) .



由于 \( 2{e}^{2{x}_{0}}-\frac{a}{{x}_{0}}=0\) ,所以 \( f\left({x}_{0}\right)=\frac{a}{2{x}_{0}}+2a{x}_{0}+a\mathrm{ln}\frac{2}{a}\ge 2a+a\mathrm{ln}\frac{2}{a}\) .



故当\(a>0\)时,\( f\left(x\right)\ge 2a+a\mathrm{ln}\frac{2}{a}\).       



第362题



参考答案:见解析


解析:


(Ⅰ)由 \( g\text{'}\left(x\right)=\lambda +\mathrm{cos}x\) 



又 \(\because g(x)\) 在 \([ - 1\)\(1]\) 上单调递减, \(\therefore g'(x)⩽0\) 在 \([ - 1\)\(1]\) 上恒成立.



\(\therefore \lambda ⩽ - \cos x\) 对 \(x \in [ - 1\)\(1]\) 恒成立,\( \because {[-\mathrm{cos}x]}_{min}=-1\) \(\therefore \lambda ⩽-1\) 



\(\because g(x)⩽{t^2} + \lambda t + 1\) 在 \(x \in [ - 1\)\(1]\) 上恒成立,即 \(g{(x{)}_{\text{max}}}⩽{{t}^{2}}+\lambda t+1\)



\(\because g{(x)_{max}} = g( - 1) = - \lambda - \sin 1\) , \(\therefore - \lambda - \sin 1⩽{t^2} + \lambda t + 1\) ,即 \((t + 1)\lambda + {t^2} + \sin 1 + 1⩾0\) 对 \(\lambda ⩽ - 1\) 恒成立。



令 \(F(\lambda ) = (t + 1)\lambda + {t^2} + \sin 1 + 1(\lambda ⩽ - 1)\) ,则 \(\left \{ \begin{array}{*{20}{l}} {t+1⩽0} \\\ {-t-1+{{t}^{2}}+\sin {1}+1⩾0} \end{array} \right .\) 



\(\therefore \) \(\left\{ {\begin{array}{*{20}{l}} {t⩽ - 1} \\\ {{t^2} - t + \sin 1⩾0} \end{array}} \right.\) , \(\therefore t⩽ - 1\)



(Ⅱ)讨论函数\( \mathrm{h}\left(x\right)=\frac{\mathrm{ln}x}{x}-{x}^{2}+2ex-m\)的零点的个数,即讨论方程 \( \frac{\mathrm{ln}x}{x}={x}^{2}-2ex+m\) 根的个数.令\( {f}_{1}\left(x\right)=\frac{\mathrm{ln}x}{x}\), \( {f}_{2}\left(x\right)={x}^{2}-2ex+m\)



\( \because {f}_{1}^{\text{'}}\left(x\right)=\frac{1-\mathrm{ln}x}{{x}^{2}}\)\(\therefore \)\( \mathrm{x}\in \left(0,e\right)\)时, \({f_1}\prime (x) > 0\) \(\therefore {f_1}(x)\) \( \left(0,e\right)\)上为增函数;



\( \mathrm{x}\in \left(e,+\mathrm{\infty }\right)\)时, \({f_1}\prime (x) < 0\) , \(\therefore {f_1}(x)\) \( \left(e,+\mathrm{\infty }\right)\)上为减函数,



\(\therefore \)\( \mathrm{x}=\mathrm{e}\)时,\( {f}_{1}{\left(\mathrm{x}\right)}_{max}={f}_{1}\left(e\right)=\frac{1}{e}\) \( {f}_{2}\left(x\right)={\left(x-e\right)}^{2}+m-{e}^{2}\)



\(\therefore \)函数 \({f_1}(x)\) 、 \({f_2}(x)\) 在同一坐标系的大致图象如图所示,



\(\therefore \)①当\( \mathrm{m}-{e}^{2}>\frac{1}{e}\),即\( \mathrm{m}>{e}^{2}+\frac{1}{e}\)时,方程无解.函数 \(h(x)\) 没有零点;



②当\( \mathrm{m}-{e}^{2}=\frac{1}{e}\),即\( \mathrm{m}={e}^{2}+\frac{1}{e}\)时,方程有一个根.函数 \(h(x)\) 有1个零点



③当\( \mathrm{m}-{e}^{2}<\frac{1}{e}\),即\( \mathrm{m}<{e}^{2}+\frac{1}{e}\)时,方程有两个根.函数 \(h(x)\) 有2个零点






第364题


已知正四棱锥的侧棱长为 \(l\) ,其各顶点都在同一球面上.若该球的体积为 \(36\pi \) ,且 \(3 \leqslant l \leqslant 3\sqrt 3 \) ,则该正四棱锥体积的取值范围是(   )


A.\([18,\frac{{81}}{4}]\)

B.\([\frac{{27}}{4},\frac{{81}}{4}]\)

C.\([\frac{{27}}{4},\frac{{64}}{3}]\)

D.\([18,64]\)


参考答案:C






第369题


A.函数 \(f\left( x \right) = {x^2} + mx + n\) 在任意区间 \(\left[ {a,b} \right]\) 上都不可能是“对望函数”

B.函数 \(f\left( x \right) = \frac{1}{3}{x^3} - {x^2} + 2\) 是 \(\left[ {0,2} \right]\) 上的“对望函数”

C.函数\( \mathrm{f}\left(x\right)=x+\mathrm{sin}x\) 是 \(\left[ {\frac{\pi }{6},\frac{{11\pi }}{6}} \right]\) 上的“对望函数”

D.若函数 \(f\left( x \right)\) 为 \(\left[ {a,b} \right]\) 上的“对望函数”,则 \(f\left( x \right)\) 在 \(\left[ {a,b} \right]\) 上单调


参考答案:ABC


解析:

分析根据“对望函数”的定义,代入具体函数依次判断,可判断A,B,C;若函数\(f\left( x \right)\)\(\left[ {a,b} \right]\)上的“对望函数”,则\(f'\left( x \right) = 0\)\(\left[ {a,b} \right]\)上必有两个不相等的实根,可判断D.



详解:对于A,因为\(f'\left( x \right) = 2x + m\)是单调递增函数,所以在\(\left[ {a,b} \right]\)上不可能存在\({x_1}\)\({x_2}\)\(a < {x_1} < {x_2} < b\)),满足\(f'\left( {{x_1}} \right) = f'\left( {{x_2}} \right)\),所以函数\(f\left( x \right) = {x^2} + mx + n\)在任意区间\(\left[ {a,b} \right]\)上都不可能是“对望函数”,故A正确;



对于B,\(f'\left( x \right) = {x^2} - 2x\)\(\frac{{f\left( 0 \right) - f\left( 2 \right)}}{{0 - 2}} = \frac{{2 - \frac{2}{3}}}{{ - 2}} = - \frac{2}{3}\),令\(f'\left( x \right) = {x^2} - 2x = - \frac{2}{3}\),得\({x_1} = \frac{{3 - \sqrt 3 }}{3}\)\({x_2} = \frac{{3 + \sqrt 3 }}{3}\),且\(0 < {x_1} < {x_2} < 2\),所以函数\(f\left( x \right) = \frac{1}{3}{x^3} - {x^2} + 2\)\(\left[ {0,2} \right]\)上的“对望函数”,故B正确;



对于C,\(f'\left( x \right) = 1 + \cos x\)\(\frac{{f\left( {\frac{\pi }{6}} \right) - f\left( {\frac{{11\pi }}{6}} \right)}}{{\frac{\pi }{6} - \frac{{11\pi }}{6}}} = 1 - \frac{3}{{5\pi }}\),令\(f'\left( x \right) = 1 + \cos x = 1 - \frac{3}{{5\pi }}\),得\(\cos x = - \frac{3}{{5\pi }}\),因此存在\({x_1},{x_2} \in \left[ {\frac{\pi }{6},\frac{{11\pi }}{6}} \right]\),使得\(f'\left( {{x_1}} \right) = f'\left( {{x_2}} \right) = 1 - \frac{3}{{5\pi }}\),所以函数\(f\left( x \right) = x + \sin x\)\(\left[ {\frac{\pi }{6},\frac{{11\pi }}{6}} \right]\)上的“对望函数”,故C正确;



对于D,若函数\(f\left( x \right)\)\(\left[ {a,b} \right]\)上的“对望函数”,则\(f'\left( x \right) = 0\)\(\left[ {a,b} \right]\)上必有两个不相等的实根,则函数\(f\left( x \right)\)\(\left[ {a,b} \right]\)上不单调,故D错误.



故选:ABC








第372题



参考答案:\(\frac{{\rm{\pi }}}{3}\)

种植区的面积为\({S}_{1}=\frac {1} {2}AF\cdot AE\cdot θ=\frac {1} {2}θ\),

正方形面积为 \(S = A{D^{\rm{2}}} = {\cos ^{\rm{2}}}\angle DAF = \frac{{1 + \cos 2\angle DAF}}{2} = \frac{{1 + \sin \theta }}{2}\) ,

设年总收入为 \(W(\theta )\) 万元,则

\(W(\theta ) = 10{S_Ⅰ} + 20{S_Ⅱ} + 20{S_Ⅲ} = 10{S_Ⅰ} + 20(S - {S_Ⅰ}) = 5\theta + 20\left( {\frac{{1 + \sin \theta }}{2} - \frac{1}{2}\theta } \right) = 10 + 10\sin \theta - 5\theta \) ,

其中 \(\frac{{\rm{\pi }}}{4} < \theta < \frac{{\rm{\pi }}}{2}\) ,求导可得 \(W'(\theta ) = 10\cos \theta - 5\) .

当 \(\frac{{\rm{\pi }}}{4} < \theta \leqslant \frac{{\rm{\pi }}}{3}\) 时, \(W'(\theta ) > 0\) , \(W(\theta )\) 递增;当 \(\frac{{\rm{\pi }}}{3} < \theta < \frac{{\rm{\pi }}}{2}\) 时, \(W'(\theta ) < 0\) , \(W(\theta )\) 递增.

所以当 \(\theta = \frac{{\pi }}{3}\) 时, \(W(\theta )\) 取得最大值,此时年总收入最大.


第373题



参考答案:见解析


解析:


在直角三角形\(OA{O}_{1}\)中, \({O_1}A = \frac{{800}}{{\cos \theta }},O{O_1} = 800\tan \theta \) , \({O_1}P = 1300 - 1600\tan \theta \) ,

由 \(O{O_1} = 800\tan \theta > 0,{O_1}P = 1300 - 1600\tan \theta > 0\) ,所以 \(0 < \tan \theta < \frac{{13}}{{16}}\) ,


所以\(θ\)的范围是 \(0 < \theta < \alpha \) ,其中 \(\tan \alpha = \frac{{13}}{{16}}\) , \(\alpha \in (0,\frac{\pi }{2})\) .


从而有 \(y = 12{O_1}A + 6AB + {O_1}P\)\( = \frac{{12 \times 800}}{{\cos \theta }} + 6 \times 800 + 1300 - 1600\tan \theta \)


\( = \frac{{1600(6 - \sin \theta )}}{{\cos \theta }} + 6100\) ,


所以 \(y = \frac{{1600(6 - \sin \theta )}}{{\cos \theta }} + 6100\) , \(\theta \in (0,\alpha )\)(\(\tan \alpha = \frac{{13}}{{16}}\) , \(\alpha \in (0,\frac{\pi }{2})\)).


令 \(g(\theta ) = \frac{{6 - \sin \theta }}{{\cos \theta }}\) ,所以 \(g'(\theta ) = \frac{{6\sin \theta - 1}}{{{{\cos }^2}\theta }}\) ,


令 \(y' = 0\) ,则 \(\sin \theta = \frac{1}{6}\) ,则 \(\theta = {\theta _0}(tan{\theta _0} = \frac{1}{{\sqrt {35} }})\) .


当 \(\theta \in (0,{\theta _0})\) 时, \(y' < 0\) ;当 \(\theta \in ({\theta _0},\alpha )\) 时, \(y' > 0\) .


函数 \(g(\theta )\) 的单调性与 \(\theta \) 关系列表如下:




所以当 \(\theta = {\theta _0}\) ,其中 \(\tan {\theta _0} = \frac{{\sqrt {35} }}{{35}}\) 时 \(g(\theta )\) 取得最小值,即\(y\)最小.

故当角 \(\theta \) 满足 \(\sin \theta = \frac{1}{6}\) ( \(\tan \theta = \frac{{\sqrt {35} }}{{35}}\) )时,金属条总长\(y\)最小.



第374题



参考答案:见解析


解析:

点\(P\) 选在\(A\)镇的正西方向\(\left ( {4-\sqrt {3}} \right )\text{km}\)处,总铺设费用最低

方案①:沿线段\(AB\)在水下铺设时,总铺设费用为5×4=20(万元)


方案②:设\(∠BPD=θ\),则 \(θ∈\left ( {{{\theta }_{o}},\frac {\pi } {2}} \right )\) ,其中 \({θ}_{0}=∠BAN\).


在\(Rt△BDP\)中, \(DP=\frac {BD} {\tan {\theta }}=\frac {3} {\tan {\theta }}\) , \(BP=\frac {BD} {\sin {\theta }}=\frac {3} {\sin {\theta }}\) ,


所以\(AP=4-DP=4-\frac {3} {\tan {\theta }}\) .


则总铺设费用为\(2AP+4BP=8-\frac {6} {\tan {\theta }}+\frac {12} {\sin {\theta }}=8+6\cdot \frac {2-\cos {\theta }} {\sin {\theta }}\)


设\(f(θ)=\frac {2-\cos {\theta }} {\sin {\theta }}\) ,则 \(f(θ)=\frac {{{\sin}^{2}}\theta -\left ( {2-\cos {\theta }} \right )\cos {\theta }} {{{\sin}^{2}}\theta }=\frac {1-2\cos {\theta }} {{{\sin}^{2}}\theta }\) ,


令\(f'(θ)=0\),得 \(\cos \theta = \frac{1}{2}\) 即 \(θ=\frac {\pi } {3}\) ,列表如下:



所以\(f(θ)\)的最小值为 \(f\left( {\frac{\pi }{3}} \right) = \sqrt 3 \) .


所以方案②的总铺设费用最低为 \(8 + 6\sqrt 3 \)  (万元),此时 \(AP=4-\sqrt {3}\) .


而 \(8 + 6\sqrt 3 < 20\) ,所以应选择方案②进行铺设,点\(P\) 选在\(A\) 镇的正西方向\(\left ( {4-\sqrt {3}} \right )\text{km}\)处,总铺设费用最低.


第375题



参考答案:见解析


解析:


\(AM = (3 + 3\sqrt {33} )m\)



 \(Rt\vartriangle ABM\) 中,因为\(AB=24\) \(\angle MAB = \theta \) 



所以 \(BM = 24\sin \theta \)  \(AM = 24\cos \theta \) 



\(MD = 24\cos \theta - 12\) ,由 \(BM = 24\sin \theta > 0\)  \(MD = 24\cos \theta - 12 > 0\)  \(\theta \in \left( {0,\frac{\pi }{3}} \right)\) 



则池内休息区总面积 \(S = 2 \cdot \frac{1}{2}MB \cdot DM = 24\sin \theta \left( {24\cos \theta - 12} \right) = 288\sin \theta \left( {2\cos \theta - 1} \right)\) \(\theta \in \left( {0,\frac{\pi }{3}} \right)\) 



 \(f\left( \theta \right) = \sin \theta \left( {2\cos \theta - 1} \right)\)  \(\theta \in \left( {0,\frac{\pi }{3}} \right)\) 



因为 \(f'\left( \theta \right) = \cos \theta \left( {2\cos \theta - 1} \right) - 2{\sin ^2}\theta = 4{\cos ^2}\theta - \cos \theta - 2 = 0 \Rightarrow \cos \theta = \frac{{1 \pm \sqrt {33} }}{8}\) 



 \(\cos \theta = \frac{{1 + \sqrt {33} }}{8} > \frac{1}{2}\) ,所以 \(\exists {\theta _0} \in \left( {0,\frac{\pi }{3}} \right)\) ,使得 \(\cos {\theta _0} = \frac{{1 + \sqrt {33} }}{8}\) 



则当 \(x \in \left( {0,{\theta _0}} \right)\) 时, \(f'\left( \theta \right) > 0 \Rightarrow f\left( \theta \right)\)  \(\left( {0,{\theta _0}} \right)\) 上单调增,



 \(x \in \left( {{\theta _0},\frac{\pi }{3}} \right)\) 时, \(f'\left( \theta \right) < 0 \Rightarrow f\left( \theta \right)\)  \(\left( {0,{\theta _0}} \right)\) 上单调递减,



 \(f\left( {{\theta _0}} \right)\) 是极大值,也是最大值,所以 \(f{\left( \theta \right)_{\max }} = f\left( {{\theta _0}} \right)\) ,此时\(AM = 24\cos {\theta _0} = 3 + 3\sqrt {33} \) 



第376题



参考答案:


\(x = \frac{{5\sqrt 3 }}{4}\left( {cm} \right)\)





连结 \(OD\) ,交 \(BC\) 于点 \(G\) ,连结 \(OC\) 



 \(\vartriangle GOC\) 中, \(GC = x\)  \(GO = \frac{x}{{\sqrt 3 }}\)  ,



 \(GD = 5 - \frac{x}{{\sqrt 3 }}\) .



因为三棱锥 \(P - ABC\) 是正四面体,



所以 \(\vartriangle DBC\) 是正三角形,



所以 \(GD = \sqrt 3 GC\) ,即 \(5 - \frac{x}{{\sqrt 3 }} = \sqrt 3 x\) ,解得 \(x = \frac{{5\sqrt 3 }}{4}\left( {cm} \right)\) .





第377题



参考答案:见解析


解析:

最大值为\(4\sqrt {15} \left( {c{m^3}} \right)\),此时\(x = 2\sqrt 3 \left( {cm} \right)\).

在 \(\vartriangle GOP\) 中, \(GO = \frac{x}{{\sqrt 3 }}\) , \(GP = 5 - \frac{x}{{\sqrt 3 }}\) ,


所以高 \(PO = \sqrt {G{P^2} - G{O^2}} = \sqrt {{{\left( {5 - \frac{x}{{\sqrt 3 }}} \right)}^2} - {{\left( {\frac{x}{{\sqrt 3 }}} \right)}^2}} = \sqrt {25 - \frac{{10x}}{{\sqrt 3 }}} \) .


由 \(25 - \frac{{10x}}{{\sqrt 3 }} > 0\) 可得, \(x < \frac{{5\sqrt 3 }}{2}\) .


所以三棱锥 \(P - ABC\) 的体积 \(V = \frac{1}{3}{S_{\vartriangle ABC}} \cdot PO = \frac{1}{3}\sqrt 3 {x^2} \cdot \sqrt {25 - \frac{{10x}}{{\sqrt 3 }}} \) 


\( = \frac{{\sqrt {15} }}{3}\sqrt {5{x^4} - \frac{2}{{\sqrt 3 }}{x^5}} \) .


设函数 \(f\left( x \right) = 5{x^4} - \frac{2}{{\sqrt 3 }}{x^5}\) , \(0 < x < \frac{{5\sqrt 3 }}{2}\) ,


则 \({{f}^{'}}\left ( {x} \right )=20{{x}^{3}}-\frac {10} {\sqrt {3}}{{x}^{4}}=10{{x}^{3}}\left ( {2-\frac {x} {\sqrt {3}}} \right )\) .


令 \({{f}^{'}}\left ( {x} \right )=0\) 得, \(x = 2\sqrt 3 \) .列表如下:



所以 \(f\left( x \right)\) 在 \(x = 2\sqrt 3 \) 时取最大值 \(f\left( {2\sqrt 3 } \right) = 144\) ,


所以 \({V_{\max }} = 4\sqrt {15} \) .


所以 \({\left[ {f\left( x \right)} \right]_{\max }} = f\left( {2\sqrt 3 } \right) = 144\) ,所以 \({V_{\max }} = 4\sqrt {15} \) .


所以三棱锥 \(P - ABC\) 体积 \(V\) 的最大值为 \(4\sqrt {15} \left( {c{m^3}} \right)\) ,此时 \(x = 2\sqrt 3 \left( {cm} \right)\) .


 


第378题



参考答案:\(\frac{{2 + \sqrt 3 }}{4}\);

由题意,在 \(Rt\vartriangle ACB\) 中,可得 \(BC = 1 \times \cos \theta = \cos \theta \) ,

在 \(Rt\vartriangle CBH\) 中,可得 \(CH = \cos \theta \times \sin \theta = \sin \theta \cos \theta \) ,

在 \(Rt\vartriangle CBP\) 中,可得 \(CP = \cos \theta \sin \left( {\frac{\pi }{3} - \theta } \right)\) ,

所以 \(CH + CP = \sin \theta \cos \theta + \cos \theta \sin \left( {\frac{\pi }{3} - \theta } \right)\)\( = \sin \theta \cos \theta + \cos \theta \left( {\frac{{\sqrt 3 }}{2}\cos \theta - \frac{1}{2}\sin \theta } \right)\)

\( = \frac{1}{2}\sin \theta \cos \theta + \frac{{\sqrt 3 }}{2}{\cos ^2}\theta \)\( = \frac{1}{4}\sin 2\theta + \frac{{\sqrt 3 }}{2} \times \frac{{1 + \cos 2\theta }}{2}\)\( = \frac{1}{2}\sin \left( {2\theta + \frac{\pi }{3}} \right) + \frac{{\sqrt 3 }}{4}\) .

因为 \(\theta \in \left[ {\frac{\pi }{{18}},\frac{\pi }{3}} \right)\) ,则 \(\frac{{4\pi }}{9} \leqslant 2\theta + \frac{\pi }{3} < \pi \) ,

所以当且仅当\(2\theta +\frac {\pi } {3}=\frac {\pi } {2}\),即 \(\theta = \frac{\pi }{{12}}\) 时, \(CH + CP\) 取得最大值,且最大值为 \(\frac{{2 + \sqrt 3 }}{4}\) 千米.


第379题



参考答案:见解析


解析:


\(\theta = \frac{\pi }{{18}}\)



取线段 \(BC\) 的中点 \(O\) ,连接 \(OP\) ,则 \(\angle COP = 2\angle CBP = 2\left( {\frac{\pi }{3} - \theta } \right) = \frac{{2\pi }}{3} - 2\theta \) .



由(1)知, \(CO = \frac{1}{2}BC = \frac{1}{2}\cos \theta \)  \(CH = \sin \theta \cos \theta \) 



\(\overset {\frown } {CP}\)的长为 \(\frac{1}{2}\cos \theta \cdot \left( {\frac{{2\pi }}{3} - 2\theta } \right) = \frac{\pi }{3}\cos \theta - \theta \cos \theta \) 



 \(\overset {\frown } {CP}\) 和线段 \(CH\) 的长度之和 



\(y = \frac{\pi }{3}\cos \theta - \theta \cos \theta + \sin \theta \cos \theta \)\( = \cos \theta \left( {\frac{\pi }{3} - \theta + \sin \theta } \right)\)  \(\theta \in \left[ {\frac{\pi }{{18}},\frac{\pi }{3}} \right)\) .



 \(f\left( \theta \right) = \frac{\pi }{3} - \theta + \sin \theta \)  \(\theta \in \left[ {\frac{\pi }{{18}},\frac{\pi }{3}} \right)\)  \(g\left( \theta \right) = \cos \theta \)  \(\theta \in \left[ {\frac{\pi }{{18}},\frac{\pi }{3}} \right)\) 



 \(y = f\left( \theta \right)g\left( \theta \right)\) 



因为 \(f'\left( \theta \right) = - 1 + \cos \theta \)  \(\theta \in \left[ {\frac{\pi }{{18}},\frac{\pi }{3}} \right)\) ,所以 \(f'\left( \theta \right) = - 1 + \cos \theta < 0\) 



故函数 \(f\left( \theta \right)\) 在区间 \(\left[ {\frac{\pi }{{18}},\frac{\pi }{3}} \right)\) 上单调递减,故 \(f(\frac{{\sqrt 3 }}{2}) < f(\theta ) \leqslant f\left( {\frac{\pi }{{18}}} \right)\) .



易知函数 \(g\left( \theta \right)\) 在区间 \(\left[ {\frac{\pi }{{18}},\frac{\pi }{3}} \right)\) 上也单调递减,所以 \(\frac{1}{2} < g\left( \theta \right) \leqslant g\left( {\frac{\pi }{{18}}} \right)\) 



所以 \(f\left( \theta \right)g\left( \theta \right) \leqslant f\left( {\frac{\pi }{{18}}} \right) \cdot g\left( {\frac{\pi }{{18}}} \right)\) 



所以当且仅当 \(\theta = \frac{\pi }{{18}}\) 时, \(\overset {\frown } {CP}\) 和线段 \(CH\) 的长度之和最大.




进入题库练习及模拟考试