某温泉度假村拟以泉眼\(C\)为圆心建造一个半径为 \(12\) 米的圆形温泉池,如图所示, \(M\) 、 \(N\) 是圆\(C\)上关于直径 \(AB\) 对称的两点,以 \(A\) 为圆心, \(AC\) 为半径的圆与圆
的弦 \(AM\) 、 \(AN\) 分别交于点\(D\) 、 \(E\) ,其中四边形 \(AEBD\) 为温泉区, I、II区域为池外休息区,III、IV区域为池内休息区,设 \(\angle MAB = \theta \) .

当池内休息区的总面积最大时,求 \(AM\) 的长.
\(AM = (3 + 3\sqrt {33} )m\)
在 \(Rt\vartriangle ABM\) 中,因为\(AB=24\), \(\angle MAB = \theta \) ,
所以 \(BM = 24\sin \theta \) , \(AM = 24\cos \theta \) ,
\(MD = 24\cos \theta - 12\) ,由 \(BM = 24\sin \theta > 0\) , \(MD = 24\cos \theta - 12 > 0\) 得 \(\theta \in \left( {0,\frac{\pi }{3}} \right)\) ,
则池内休息区总面积 \(S = 2 \cdot \frac{1}{2}MB \cdot DM = 24\sin \theta \left( {24\cos \theta - 12} \right) = 288\sin \theta \left( {2\cos \theta - 1} \right)\) ,\(\theta \in \left( {0,\frac{\pi }{3}} \right)\) ;
设 \(f\left( \theta \right) = \sin \theta \left( {2\cos \theta - 1} \right)\) , \(\theta \in \left( {0,\frac{\pi }{3}} \right)\) ,
因为 \(f'\left( \theta \right) = \cos \theta \left( {2\cos \theta - 1} \right) - 2{\sin ^2}\theta = 4{\cos ^2}\theta - \cos \theta - 2 = 0 \Rightarrow \cos \theta = \frac{{1 \pm \sqrt {33} }}{8}\) ,
又 \(\cos \theta = \frac{{1 + \sqrt {33} }}{8} > \frac{1}{2}\) ,所以 \(\exists {\theta _0} \in \left( {0,\frac{\pi }{3}} \right)\) ,使得 \(\cos {\theta _0} = \frac{{1 + \sqrt {33} }}{8}\) ,
则当 \(x \in \left( {0,{\theta _0}} \right)\) 时, \(f'\left( \theta \right) > 0 \Rightarrow f\left( \theta \right)\) 在 \(\left( {0,{\theta _0}} \right)\) 上单调增,
当 \(x \in \left( {{\theta _0},\frac{\pi }{3}} \right)\) 时, \(f'\left( \theta \right) < 0 \Rightarrow f\left( \theta \right)\) 在 \(\left( {0,{\theta _0}} \right)\) 上单调递减,
即 \(f\left( {{\theta _0}} \right)\) 是极大值,也是最大值,所以 \(f{\left( \theta \right)_{\max }} = f\left( {{\theta _0}} \right)\) ,此时\(AM = 24\cos {\theta _0} = 3 + 3\sqrt {33} \) .