高中数学选择性必修 第二册(381题)
定义:如果函数 \(f\left( x \right)\) 在 \(\left[ {a,b} \right]\) 上存在 \({x_1}\) , \({x_2}\) ( \(a < {x_1} < {x_2} < b\) ),满足 \(f'\left( {{x_1}} \right) = f'\left( {{x_2}} \right) = \frac{{f\left( a \right) - f\left( b \right)}}{{a - b}}\) ,则称 \({x_1}\) , \({x_2}\) 为 \(\left[ {a,b} \right]\) 上的“对望数”.已知函数 \(f\left( x \right)\) 为 \(\left[ {a,b} \right]\) 上的“对望函数”.下列结论正确的是( )
A.函数 \(f\left( x \right) = {x^2} + mx + n\) 在任意区间 \(\left[ {a,b} \right]\) 上都不可能是“对望函数”
B.函数 \(f\left( x \right) = \frac{1}{3}{x^3} - {x^2} + 2\) 是 \(\left[ {0,2} \right]\) 上的“对望函数”
C.函数\( \mathrm{f}\left(x\right)=x+\mathrm{sin}x\) 是 \(\left[ {\frac{\pi }{6},\frac{{11\pi }}{6}} \right]\) 上的“对望函数”
D.若函数 \(f\left( x \right)\) 为 \(\left[ {a,b} \right]\) 上的“对望函数”,则 \(f\left( x \right)\) 在 \(\left[ {a,b} \right]\) 上单调
知识点:第五章 一元函数的导数及其应用
参考答案:ABC
解析:
分析:根据“对望函数”的定义,代入具体函数依次判断,可判断A,B,C;若函数\(f\left( x \right)\)为\(\left[ {a,b} \right]\)上的“对望函数”,则\(f'\left( x \right) = 0\)在\(\left[ {a,b} \right]\)上必有两个不相等的实根,可判断D.
详解:对于A,因为\(f'\left( x \right) = 2x + m\)是单调递增函数,所以在\(\left[ {a,b} \right]\)上不可能存在\({x_1}\),\({x_2}\)(\(a < {x_1} < {x_2} < b\)),满足\(f'\left( {{x_1}} \right) = f'\left( {{x_2}} \right)\),所以函数\(f\left( x \right) = {x^2} + mx + n\)在任意区间\(\left[ {a,b} \right]\)上都不可能是“对望函数”,故A正确;
对于B,\(f'\left( x \right) = {x^2} - 2x\),\(\frac{{f\left( 0 \right) - f\left( 2 \right)}}{{0 - 2}} = \frac{{2 - \frac{2}{3}}}{{ - 2}} = - \frac{2}{3}\),令\(f'\left( x \right) = {x^2} - 2x = - \frac{2}{3}\),得\({x_1} = \frac{{3 - \sqrt 3 }}{3}\),\({x_2} = \frac{{3 + \sqrt 3 }}{3}\),且\(0 < {x_1} < {x_2} < 2\),所以函数\(f\left( x \right) = \frac{1}{3}{x^3} - {x^2} + 2\)是\(\left[ {0,2} \right]\)上的“对望函数”,故B正确;
对于C,\(f'\left( x \right) = 1 + \cos x\),\(\frac{{f\left( {\frac{\pi }{6}} \right) - f\left( {\frac{{11\pi }}{6}} \right)}}{{\frac{\pi }{6} - \frac{{11\pi }}{6}}} = 1 - \frac{3}{{5\pi }}\),令\(f'\left( x \right) = 1 + \cos x = 1 - \frac{3}{{5\pi }}\),得\(\cos x = - \frac{3}{{5\pi }}\),因此存在\({x_1},{x_2} \in \left[ {\frac{\pi }{6},\frac{{11\pi }}{6}} \right]\),使得\(f'\left( {{x_1}} \right) = f'\left( {{x_2}} \right) = 1 - \frac{3}{{5\pi }}\),所以函数\(f\left( x \right) = x + \sin x\)是\(\left[ {\frac{\pi }{6},\frac{{11\pi }}{6}} \right]\)上的“对望函数”,故C正确;
对于D,若函数\(f\left( x \right)\)为\(\left[ {a,b} \right]\)上的“对望函数”,则\(f'\left( x \right) = 0\)在\(\left[ {a,b} \right]\)上必有两个不相等的实根,则函数\(f\left( x \right)\)在\(\left[ {a,b} \right]\)上不单调,故D错误.
故选:ABC