\(x = \frac{{5\sqrt 3 }}{4}\left( {cm} \right)\)
连结 \(OD\) ,交 \(BC\) 于点 \(G\) ,连结 \(OC\) ,
在 \(\vartriangle GOC\) 中, \(GC = x\) , \(GO = \frac{x}{{\sqrt 3 }}\) ,
则 \(GD = 5 - \frac{x}{{\sqrt 3 }}\) .
因为三棱锥 \(P - ABC\) 是正四面体,
所以 \(\vartriangle DBC\) 是正三角形,
所以 \(GD = \sqrt 3 GC\) ,即 \(5 - \frac{x}{{\sqrt 3 }} = \sqrt 3 x\) ,解得 \(x = \frac{{5\sqrt 3 }}{4}\left( {cm} \right)\) .

