“微信扫一扫”进入题库练习及模拟考试
已知函数
参考答案:由题意, \({f}^{\, '}\left ( {x} \right )={e}^{x}-ex\) ,
令 \(g\left ( {x} \right )={e}^{x}-ex\) ,则 \({g}^{\, '}\left ( {x} \right )={e}^{x}-e\) ,令 \(g'(x) = 0\) ,则 \(x = 1\) ,
故在区间 \((-\infty ,1)\) 上, \(g'(x) < 0\) , \(g(x)\) 为减函数;
在区间 \((1,+\infty )\) 上, \(g'(x) > 0\) , \(g(x)\) 为增函数,
∴ \(g{(x)_{\min }} = g(1) = 0\),
故 \(f'\left( x \right) \geqslant f'(1) = 0\) ,故\(f\left ( {x} \right )\)在\(\text{R}\)上为增函数. \(f(1) = \frac{{\rm{e}}}{2}\) ,故由 \(f\left( {{x_1}} \right) + f\left( {{x_2}} \right) = 2f(1)\) , \({x_1} < {x_2}\) ,
可得 \(f\left( {{x_1}} \right) < f(1) < f\left( {{x_2}} \right)\) ,则 \({x_1} < 1 < {x_2}\) .
欲证: \({x_1} + {x_2} < 2\) ,只需证: \({x_1} < 2 - {x_2}\) ,即证: \(f\left( {{x_1}} \right) < f\left( {2 - {x_2}} \right)\) ,即证:\(e-f\left ( {{{x}_{2}}} \right )<f\left ( {2-{{x}_{2}}} \right )\) .
令\(F\left ( {x} \right )=f\left ( {x} \right )+f\left ( {2-x} \right )-e\left ( {x>1} \right )\),则\({F}^{\, '}\left ( {x} \right )={f}^{\, '}\left ( {x} \right )+{f}^{\, '}\left ( {2-x} \right )={e}^{x}-ex-{e}^{2-x}+e\left ( {2-x} \right )\) ,
令 \(H(x) = F'(x)\) ,则 \({H}^{\, '}\left ( {x} \right )={e}^{x}-ex+{e}^{2-x}-e\) ,
故 \({F^\prime }(x)\) 为增函数, \(F'(x) > F'(1) = 0\) ,故 \(F(x)\) 为增函数, \(F(x) > F(1) = 0\) ,
故 \(F\left( {{x_2}} \right) > 0\) ,则\(e-f\left ( {{{x}_{2}}} \right )<f\left ( {2-{{x}_{2}}} \right )\),∴ \({x_1} + {x_2} < 2\) .