“微信扫一扫”进入题库练习及模拟考试
已知函数\(f\left ( {x} \right )=\ln {x}-ax\)有两个零点\({x}_{1}<{x}_{2}\),求证:\({x}_{1}{x}_{2}>{e}^{2}\).
参考答案:见解析
解析:
法一:分析构造法
由\(f\left ( {x} \right )=\ln {x}-ax⇔a=\frac {\ln {x}} {x}\),令\(g\left ( {x} \right )=\frac {\ln {x}} {x}-a\),有\(g\left ( {{x}_{1}} \right )=g\left ( {{x}_{2}} \right )=0\),\({g}^{\, '}\left ( {x} \right )=\frac {1-\ln {x}} {{x}^{2}}\),则\(g\left ( {x} \right )\)在\(\left ( {0,e} \right )\)上递增,\(\left ( {e,+\infty } \right )\)上递减
不妨设\(1<{x}_{1}<e<{x}_{2}\)
要证: \({x_1}{x_2} > {e^2}\) ,只需证:\({x}_{1}>\frac {{e}^{2}} {{x}_{2}}\),只需证:\(g\left ( {{x}_{1}} \right )>g\left ( {\frac {{e}^{2}} {{x}_{2}}} \right )\),只需证: \(g\left ( {{x}_{2}} \right )>g\left ( {\frac {{e}^{2}} {{x}_{2}}} \right )\) ,
\(F\left ( {x} \right )=g\left ( {x} \right )-g\left ( {\frac {{e}^{2}} {x}} \right )\left ( {x>e} \right )\) , \({F}^{\, '}\left ( {x} \right )={g}^{'}\left ( {x} \right )-{\frac {{e}^{2}} {{x}^{2}}g}^{,}\left ( {\frac {{e}^{2}} {x}} \right )=\frac {\left ( {\ln {x-1}} \right )\left ( {{x}^{2}-{e}^{2}} \right )} {{e}^{2}{x}^{2}}\)
则\(F\left ( {x} \right )>F\left ( {e} \right )=0\),即证。
法二:构造一元偏差函数
要证 \({x_1}{x_2} > {{\rm{e}}^2} \Leftrightarrow \ln \left( {{x_1}{x_2}} \right) > 2 \Leftrightarrow \ln {x_1} + \ln {x_2} > 2\) ,由 \(\ln {x_1} = a{x_1}\) , \(\ln {x_2} = a{x_2},\) 只需证\({x}_{1}+{x}_{2}>\frac {2} {a}\)
构造函数\(F\left ( {x} \right )=f\left ( {\frac {1} {a}+x} \right )-f\left ( {\frac {1} {a}-x} \right )\left ( {x>\frac {1} {a}} \right )\),易证。
法三:对数均值不等式
因为 \(f\left( x \right)\) 有两个相异的零点,又由于 \(x > 0\) ,故不妨设令 \({x_1} > {x_2} > 0\) ,
且有 \(\ln {x_1} = a{x_1}\) , \(\ln {x_2} = a{x_2},\)
\(\therefore \ln {x_1} + \ln {x_2} = a\left( {{x_1} + {x_2}} \right),\ln {x_1} - \ln {x_2} = a\left( {{x_1} - {x_2}} \right)\) ,
要证 \({x_1}{x_2} > {{\rm{e}}^2} \Leftrightarrow \ln \left( {{x_1}{x_2}} \right) > 2 \Leftrightarrow \ln {x_1} + \ln {x_2} > 2\)
\( \Leftrightarrow ({x_1} + {x_2})\frac{{\ln {x_1} - \ln {x_2}}}{{{x_1} - {x_2}}} > 2 \Leftrightarrow \frac{{\ln {x_1} - \ln {x_2}}}{{{x_1} - {x_2}}} > \frac{2}{{{x_1} + {x_2}}}\)
\( \Leftrightarrow \ln {x_1} - \ln {x_2} > \frac{{2\left( {{x_1} - {x_2}} \right)}}{{{x_1} + {x_2}}} \Leftrightarrow \ln \frac{{{x_1}}}{{{x_2}}} > \frac{{2\left( {\frac{{{x_1}}}{{{x_2}}} - 1} \right)}}{{\frac{{{x_1}}}{{{x_2}}} + 1}}\)
令 \(t = \frac{{{x_1}}}{{{x_2}}}\) ,则 \(t > 1\) ,所以只要证明 \(\ln t > \frac{{2\left( {t - 1} \right)}}{{t + 1}},t > 1\) 时恒成立,
令 \(g\left( t \right) = \ln t - \frac{{2\left( {t - 1} \right)}}{{t + 1}}\),\(t > 1\)
\({\rm{g'}}\left( t \right) = \frac{1}{t} - \frac{4}{{{{\left( {t + 1} \right)}^2}}} = \frac{{{{\left( {t - 1} \right)}^2}}}{{t{{\left( {t + 1} \right)}^2}}},\) 由于已知 \(t > 1\therefore g'\left( t \right) > 0\) 恒成立,
所以 \(g\left( t \right)\) 在 \((1, + \infty )\) 递增, \(\therefore g\left( t \right) > g\left( 1 \right) = 0\)
所以 \(t > 1\) 时, \(g\left( t \right) > 0\) 恒成立,即 \(\ln t > \frac{{2\left( {t - 1} \right)}}{{t + 1}}\) 恒成立,从而证明 \({x_1}{x_2} > {e^2}\).
法四:比值代换
令 \({t}_{1}=\ln {{x}_{1}}\),\({t}_{2}=\ln {{x}_{2}}\)
由\(\ln {{x}_{1}}=a{{x}_{1}}\), \(\ln {{x}_{2}}=a{{x}_{2}}\) 得 \({t}_{1}=a{e}^{{t}_{1}}\) ,\({t}_{2}=a{e}^{{t}_{2}}\),\(\therefore \frac {{t}_{1}} {{t}_{2}}={e}^{{t}_{2}-{t}_{1}}\)
要证\({x}_{1}{x}_{2}>{e}^{2}⇔\ln {\left ( {{x}_{1}{x}_{2}} \right )>2⇔\ln {{x}_{1}}}+\ln {{x}_{2}}>2⇔{t}_{1}+{t}_{2}>2\)
令\(k=\frac {{t}_{2}} {{t}_{1}}>1\),则 \({t}_{2}-{t}_{1}=\ln {k}\)
\(\therefore {t}_{1}=\frac {\ln {k}} {k-1}\),\({t}_{2}=\frac {k\ln {k}} {k-1}\),则\({t}_{1}+{t}_{2}=\frac {\left ( {k+1} \right )\ln {k}} {k-1}\)
只需证:\(\ln {k>\frac {2\left ( {k-1} \right )} {k+1}}\left ( {k>1} \right )\)同理法三