由 (1) 可知: \( a<0\) 且当 \( x=\sqrt{-a}\) 时, \( f\left(x\right)\) 取极大值为 \( f\left(\sqrt{-a}\right)=-\text{ln}\left(-a\right)\)
从而 \( f\left(x\right)\) 的最大值为 \(f\left ( {\sqrt {-a}} \right )=-\text{ln}\left ( {-a} \right ){,x}_{0}=\sqrt {-a}\)
为满足题意,必有 \( f\left(\sqrt{-a}\right)=-\mathrm{ln}\left(-a\right)>0\) ,即 \( -1<a<0\) ,
设 \( h\left(x\right)=\text{ln}x-x\) , 则 \( {h}^{\text{'}}\left(x\right)=\frac{1}{x}-1=\frac{1-x}{x}\) ,
当 \(x\in \left ( {0,1} \right )\) 时, \( {h}^{\text{'}}\left(x\right)>0\) , 所以 \( h\left(x\right)\) 在 \(\left ( {0,1} \right )\) 上单调递増;
当 \(x\in \left ( {1,+\infty } \right )\) 时, \( {h}^{\text{'}}\left(x\right)<0\) , 所以 \( h\left(x\right)\) 在 \(\left ( {1,+\infty } \right )\) 上单调递减,
所以 \( h(x{)}_{\text{max}}=h\left(1\right)=-1<0\), 从而 \( \text{ln}x<x\),
\( \therefore 2f\left({x}_{0}\right)=-4\text{ln}\left(\sqrt{-a}\right)=2\text{ln}\left(-\frac{1}{a}\right)<-\frac{2}{a}\),
\(\because {x}_{1},{x}_{2}\) 是函数 \( f\left(x\right)\) 的两个不同的零点,
\(\therefore f\left ( {{x}_{1}} \right )=-2\text{ln}{x}_{1}+\frac {a} {{x}^{2}_{1}}+1=0,f\left ( {{x}_{2}} \right )=-2\text{ln}{x}_{2}+\frac {a} {{x}^{2}_{2}}+1=0\),
两式相减得: \( -\frac{1}{a}=\frac{{x}_{2}^{2}-{x}_{1}^{2}}{2{x}_{1}^{2}{{x}_{2}}^{2}\text{ln}\frac{{x}_{2}}{{x}_{1}}}\).
设 \({x_2} > {x_1} > 0\), 所以要证明: \( \frac{1}{{x}_{1}^{2}}+\frac{1}{{x}_{2}^{2}}>2f\left({x}_{0}\right)\),
只需要证明: \( \frac{1}{{x}_{1}{ }^{2}}+\frac{1}{{x}_{2}{ }^{2}}>2\times \frac{\left({x}_{2}{ }^{2}-{x}_{1}^{2}\right)}{2{x}_{1}^{2}{{x}_{2}}^{2}\text{ln}\frac{{x}_{2}}{{x}_{1}}}\).
即证明: \( \text{ln}\frac{{x}_{2}^{2}}{{x}_{1}^{2}}>\frac{2\left({x}_{2}^{2}-{x}_{1}^{2}\right)}{{x}_{1}^{2}+{x}_{2}^{2}}\), 也就是证明: \( \text{ln}\frac{{x}_{2}^{2}}{{x}_{1}^{2}}>\frac{2\left(\frac{{x}_{2}^{2}}{{x}_{1}^{2}}-1\right)}{\frac{{x}_{2}^{2}}{{x}_{1}^{2}}+1}\),
设 \(\frac {{x}^{2}_{2}} {{x}^{2}_{1}}=t\in \left ( {1,+\infty } \right )\), 下面就只需证明: \( \text{ln}t>\frac{2\left(t-1\right)}{t+1}(t>1)\),
设 \( g\left(t\right)=\text{ln}t-\frac{2\left(t-1\right)}{t+1}(t>1)\), 则 \( {g}^{\text{'}}\left(t\right)=\frac{1}{t}-\frac{4}{(t+1{)}^{2}}=\frac{(t-1{)}^{2}}{t(t+1{)}^{2}}>0\),
\( \therefore g\left(t\right)\) 在 \(\left ( {1,+\infty } \right )\) 上为增函数, 从而 \( g\left(t\right)=\text{ln}t-\frac{2\left(t-1\right)}{t+1}>g\left(1\right)=0\),
\( \therefore \text{ln}t>\frac{2\left(t-1\right)}{t+1}\) 成立, 从而 \(\frac {1} {{x}^{2}_{1}}+\frac {1} {{x}^{2}_{2}}>2f\left ( {{x}_{0}} \right )\)