由 \( {f}^{\text{'}}\left(x\right)=\mathrm{cos}x-\frac{1}{x+1}\) , \( x\in \left(-1,+\infty \right)\)
令 \( g\left(x\right)=\mathrm{cos}x-\frac{1}{x+1}\) , \( x\in \left(-1,\frac{\pi }{2}\right)\) \( \therefore {g}^{\text{'}}\left(x\right)=-\mathrm{sin}x+\frac{1}{{\left(x+1\right)}^{2}}\) , \( x\in \left(-1,\frac{\pi }{2}\right)\)
\( \because \frac{1}{{\left(x+1\right)}^{2}}\) 在 \( \left(-1,\frac{\pi }{2}\right)\) 上单调递减, \( \frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=\frac{1}{7},\) 在 \( \left(-1,\frac{\pi }{2}\right)\) 上单调递减\( \therefore {g}^{\text{'}}\left(x\right)\) 在 \( \left(-1,\frac{\pi }{2}\right)\) 上单调递减
①当 \(x\in (-1,0]\) 时,可知 \( {f}^{\text{'}}\left(x\right)\) 在 \((-1,0]\) 上单调递增 \( \therefore {f}^{\text{'}}\left(x\right)\le {f}^{\text{'}}\left(0\right)=0\) ,\( \therefore f\left(x\right)\) 在\((-1,0]\)上单调递减,又 \( f\left(0\right)=0\), \( \therefore x=0\) 为 \( f\left(x\right)\) 在 \((-1,0]\) 上的唯一零点
②当 \(x\in (0,\frac {\pi } {2}]\) 时,\(g'\left ( {0} \right )=-\sin {0}+1=1>0\), \( {g}^{\text{'}}\left(\frac{\pi }{2}\right)=-\mathrm{sin}\frac{\pi }{2}+\frac{4}{{\left(\pi +2\right)}^{2}}=\frac{4}{{\left(\pi +2\right)}^{2}}-1<0\) ,
\( \therefore \exists {x}_{0}\in \left(0,\frac{\pi }{2}\right)\) ,使得 \( {g}^{\text{'}}\left({x}_{0}\right)=0\),\( {f}^{\text{'}}\left(x\right)\) 在 \( \left(0,{x}_{0}\right)\) 上单调递增,在 \( \left({x}_{0},\frac{\pi }{2}\right)\) 上单调递减,又 \( {f}^{\text{'}}\left(0\right)=0\), \( \therefore {f}^{\text{'}}\left({x}_{0}\right)>0\),\( \therefore f\left(x\right)\) 在 \( \left(0,{x}_{0}\right)\) 上单调递增,此时 \( f\left(x\right)>f\left(0\right)=0\) ,不存在零点
又 \( {f}^{\text{'}}\left(\frac{\pi }{2}\right)=\mathrm{cos}\frac{\pi }{2}-\frac{2}{\pi +2}=-\frac{2}{\pi +2}<0\) ,\( \therefore \exists {x}_{1}\in \left({x}_{0},\frac{\pi }{2}\right)\) ,使得 \( {f}^{\text{'}}\left({x}_{1}\right)=0\)
\( \therefore f\left(x\right)\) 在 \( \left({x}_{0},{x}_{1}\right)\) 上单调递增,在 \( \left({x}_{1},\frac{\pi }{2}\right)\) 上单调递减,又\( f\left({x}_{0}\right)>f\left(0\right)=0\) , \( f\left(\frac{\pi }{2}\right)=\mathrm{sin}\frac{\pi }{2}-\mathrm{ln}\left(1+\frac{\pi }{2}\right)=\mathrm{ln}\frac{2e}{\pi +2}>\mathrm{ln}1=0\) \( \therefore f\left(x\right)>0\) 在 \( \left({x}_{0},\frac{\pi }{2}\right)\) 上恒成立,此时不存在零点③当 \( x\in \left[\frac{\pi }{2},\pi \right]\) 时, \(\sin {x}\)单调递减,\(-\ln {\left ( {x+1} \right )}\) 单调递减
\( \therefore f\left(x\right)\) 在 \( \left[\frac{\pi }{2},\pi \right]\) 上单调递减又 \( f\left(\frac{\pi }{2}\right)>0\) ,\( f\left(\pi \right)=\mathrm{sin}\pi -\mathrm{ln}\left(\pi +1\right)=-\mathrm{ln}\left(\pi +1\right)<0\)
即 \( f\left(\pi \right)\cdot f\left(\frac{\pi }{2}\right)<0\) ,又 \( f\left(x\right)\) 在 \( \left[\frac{\pi }{2},\pi \right]\) 上单调递减, \( \therefore f\left(x\right)\) 在\( \left[\frac{\pi }{2},\pi \right]\) 上存在唯一零点
④当 \(x \in \left( {\pi , + \infty } \right)\) 时, \( \mathrm{sin}x\in \left[-\mathrm{1,1}\right]\) ,\( \mathrm{ln}\left(x+1\right)>\mathrm{ln}\left(\pi +1\right)>\mathrm{ln}e=1\), \( \therefore \mathrm{sin}x-\mathrm{ln}\left(x+1\right)<0\)
即 \( f\left(x\right)\) 在 \( \left(\pi ,+\infty \right)\) 上不存在零点综上所述: \( f\left(x\right)\) 有且仅有\( 2\)个零点