由(1)得 \(f(x)\) 在 \((0,\frac{\pi }{2})\) 上单调递增,又 \(f(0) = 0\) ,所以 \(f(x) > 0\) ,
(ⅰ)当 \(m⩽0\) 时, \(f(x) > 0⩾m{x^2}\) 成立.
(ⅱ)当 \(m > 0\) 时,令\(p\left ( {x} \right )=\mathrm{sin}x-x\),则\({p}^{\, '}\left ( {x} \right )=\mathrm{cos}x-1\),
当 \(x \in (0,\frac{\pi }{2})\) 时,\(p'(x) < 0\) , \(p(x)\) 单调递减,又 \(p(0) = 0\) ,所以 \(p(x) < 0\) ,故 \(x \in (0,\frac{\pi }{2})\) 时, \( \mathrm{sin}x<x\).\((*)\)
由\((*)\)式可得\(f\left ( {x} \right )-m{x}^{2}=\mathrm{sin}x+\mathrm{tan}x-2x-m{x}^{2}<\mathrm{tan}x-x-m{x}^{2}\),
令\(g\left ( {x} \right )=\mathrm{tan}x-x-m{x}^{2}\),则\(g'(x) = {\tan ^2}x - 2mx\),由\((*)\)式可得\(g'(x) < \frac{{{x^2}}}{{{{\cos }^2}x}} - 2mx = \frac{x}{{{{\cos }^2}x}}(x - 2m{\cos ^2}x)\)
令 \(h(x) = x - 2m{\cos ^2}x\) ,得 \(h(x)\) 在 \((0,\frac{\pi }{2})\) 上单调递增,
又 \(h(0) < 0\) , \(h(\frac{\pi }{2}) > 0\) ,所以存在 \(t \in (0,\frac{\pi }{2})\) 使得 \(h(t) = 0\) ,即 \(x \in (0,t)\) 时,\(h(x) < 0\) ,
所以 \(x \in (0,t)\) 时, \(g'(x) < 0\) , \(g(x)\) 单调递减,又 \(g(0) = 0\) ,所以 \(g(x) < 0\) ,
即 \(x \in (0,t)\) 时, \(f(x) - m{x^2} < 0\) ,与 \(f(x) > m{x^2}\) 矛盾.
综上,满足条件的 \(m\) 的取值范围是 \(( - \infty \),\(0]\) .