\( f\left({x}_{1}\right)-\lambda \mathrm{ln}{x}_{1}=f\left({x}_{2}\right)-\lambda \mathrm{ln}{x}_{2}\) ,即 \( 2{x}_{1}-\mathrm{sin}{x}_{1}-\lambda \mathrm{ln}{x}_{1}=2{x}_{2}-\mathrm{sin}{x}_{2}-\lambda \mathrm{ln}{x}_{2}\) ,
整理为 \( \lambda (\mathrm{ln}{x}_{2}-\mathrm{ln}{x}_{1})=2({x}_{2}-{x}_{1})-(\mathrm{sin}{x}_{2}-\mathrm{sin}{x}_{1})\) ,
令 \(u(x) = x - \sin x\) , \( x>0\) ,
则 \( {u}^{\text{'}}\left(x\right)=1-\mathrm{cos}x\ge 0\) ,所以 \(u(x) = x - \sin x\) 在 \(\left ( {0,+\infty } \right )\) 上单调递增,
不妨设 \({x_1} < {x_2}\) ,所以 \( {x}_{1}-\mathrm{sin}{x}_{1}<{x}_{2}-\mathrm{sin}{x}_{2}\) ,从而 \( {x}_{2}-{x}_{1}>\mathrm{sin}{x}_{2}-\mathrm{sin}{x}_{1}\) ,
所以 \( \lambda (\mathrm{ln}{x}_{2}-\mathrm{ln}{x}_{1})=2({x}_{2}-{x}_{1})-(\mathrm{sin}{x}_{2}-\mathrm{sin}{x}_{1})>2({x}_{2}-{x}_{1})-({x}_{2}-{x}_{1})={x}_{2}-{x}_{1}\) ,
所以 \( \lambda >\frac{{x}_{2}-{x}_{1}}{\mathrm{ln}{x}_{2}-\mathrm{ln}{x}_{1}}\).
下面证明: \( \frac{{x}_{2}-{x}_{1}}{\mathrm{ln}{x}_{2}-\mathrm{ln}{x}_{1}}>\sqrt{{x}_{1}{x}_{2}}\) ,即证明: \( \frac{\frac{{x}_{2}}{{x}_{1}}-1}{\mathrm{ln}\frac{{x}_{2}}{{x}_{1}}}>\sqrt{\frac{{x}_{2}}{{x}_{1}}}\) ,
令 \( \frac{{x}_{2}}{{x}_{1}}=t\) ,即证明 \( \frac{t-1}{\mathrm{ln}t}>\sqrt{t}\) ,其中 \(t > 1\) ,只要证明 \( \frac{t-1}{\sqrt{t}}-\mathrm{ln}t>0\).
设 \( v\left(t\right)=\frac{t-1}{\sqrt{t}}-\mathrm{ln}t(t>1)\) ,则 \( {v}^{\text{'}}\left(t\right)=\frac{(\sqrt{t}-1{)}^{2}}{2t\sqrt{t}}>0\) ,
所以 \(v(t)\) 在\(\left ( {1,+\infty } \right )\)上单调递增,所以 \( v\left(t\right)>v\left(1\right)=\frac{1-1}{\sqrt{1}}-\mathrm{ln}1=0\) ,
所以 \( \frac{{x}_{2}-{x}_{1}}{\mathrm{ln}{x}_{2}-\mathrm{ln}{x}_{1}}>\sqrt{{x}_{1}{x}_{2}}\) ,
所以 \( \lambda >\frac{{x}_{2}-{x}_{1}}{\mathrm{ln}{x}_{2}-\mathrm{ln}{x}_{1}}>\sqrt{{x}_{1}{x}_{2}}\) ,
所以 \( {x}_{1}{x}_{2}<{\lambda }^{2}\) .