“微信扫一扫”进入题库练习及模拟考试
已知函数
当
参考答案:证明:当\( a>1\)时,\( f\left(x\right)=\frac{1}{2}a{x}^{2}+x-{e}^{x}\) ,则 \({f}^{'}\left ( {x} \right )=ax+1-{e}^{x}\),
令 \(h\left ( {x} \right )={f}^{'}\left ( {x} \right )=ax+1-{e}^{x}\),其中 \( x>0\),则 \({h}^{'}\left ( {x} \right )=a-{e}^{x}=0\),可得 \( x=\mathrm{ln}a>0\),
当 \(0 < x < \ln a\) 时,\({h}^{'}\left ( {x} \right )>0\),此时函数 \( h\left(x\right)\) 单调递增,
当 \(x > \ln a\) 时,\({h}^{'}\left ( {x} \right )<0\),此时函数 \( h\left(x\right)\) 单调递减,
所以,\(h\left ( {x} \right )_{\text{max}}=h\left ( {\ln {a}} \right )=a\ln {a+1-a}\),
令 \( p\left(a\right)=a\mathrm{ln}a+1-a\),其中 \( a>1\) ,则 \({p}^{'}\left ( {a} \right )=\mathrm{ln}a>0\),
所以,函数 \( p\left(a\right)\) 在 \(\left ( {1,+\infty } \right )\) 上单调递增,当 \( a>1\) 时, \( p\left(a\right)>p\left(1\right)=0\),
所以, \({f}^{'}\left ( {x} \right )_{max}={f}^{'}\left ( {\ln {a}} \right )=a\ln {a}+1-a>0\) 且 \({f}^{'}\left ( {0} \right )=0\),
由(1)知 \( {e}^{x}\ge x+1>x\) ,则当 \( x>1\) 时,\( {e}^{x}={e}^{\frac{x}{2}}\cdot {e}^{\frac{x}{2}}>\frac{{x}^{2}}{4}\) , \({f}^{'}\left ( {x} \right )<ax+x-\frac {{x}^{2}} {4}\),
当 \( x>4\left(a+1\right)\) 时, \({f}^{'}\left ( {x} \right )<0\) ,由 \( {e}^{x}>x\) ,得 \( x>\mathrm{ln}x\), \( \therefore 4\left(a+1\right)>a>\mathrm{ln}a\),
所以\(f\left ( {x} \right )\)存在极大值点\(m\in \left ( {\mathrm{ln}a,+\infty } \right )\),
\(\because {f}^{'}\left ( {m} \right )=0\) ,故 \( am={e}^{m}-1\),
\( \therefore 2f\left(m\right)=m\left({e}^{m}-1\right)+2m-2{e}^{m}=\left(m-2\right){e}^{m}+m\).
所以,要证 \( f\left(m\right)>\frac{m-3}{2}\) ,只要证 \( \left(m-2\right){e}^{m}+m>m-3\) ,即证 \( \left(m-2\right){e}^{m}+3>0\left(m>0\right)\).
令 \(φ\left ( {x} \right )=\left ( {x-2} \right ){e}^{x}+3\left ( {x>0} \right )\),则 \({φ}^{'}\left ( {x} \right )=\left ( {x-1} \right ){e}^{x}\),由 \({φ}^{'}\left ( {x} \right )=0\),得 \( x=1\),
当 \( 0<x<1\) 时, \({φ}^{'}\left ( {x} \right )<0\),函数 \( \phi \left(x\right)\) 单调递减,
当 \( x>1\)时, \({φ}^{'}\left ( {x} \right )>0\),函数 \(φ\left ( {x} \right )\) 单调递增,所以, \(φ\left ( {x} \right )\ge φ\left ( {1} \right )=3-e>0\),
综上, \( f\left(m\right)>\frac{m-3}{2}\) 成立.