“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知函数\( \mathrm{f}\left(x\right)={e}^{x}-\mathrm{a}\mathrm{sin}x\left(a>0\right)\) \(f(x) = {{\rm{e}}^x} - a\sin x(a > 0)\) ,曲线 \(y = f(x)\) \((0,f(0))\) 处的切线也与曲线 \(y = 2x - {x^2}\) 相切.

求实数a的值;



知识点:第五章 一元函数的导数及其应用


参考答案:\( \because \mathrm{f}\mathrm{\text{'}}\left(x\right)={e}^{x}-a\mathrm{cos}x\)\(\because f'(x) = {{\rm{e}}^x} - a\cos x\) , \(\therefore f'(0) = 1 - a\) ,又 \(f(0) = 1\) ,所以 \(y = f(x)\) 在 \((0,f(0))\) 处的切线方程为 \(y = (1 - a)x + 1\),因为其也与曲线 \(y = 2x - {x^2}\) 相切,则联立 \(\left\{ {\begin{array}{*{20}{c}}
{y = \left( {1 - a} \right)x + 1} \\
{y = 2x - {x^2}}
\end{array}} \right.\) ,得 \({x^2} - (a + 1)x + 1 = 0\) ,由 \(\Delta = {(a + 1)^2} - 4 = 0\) 及 \(a > 0\) ,解得 \(a = 1\) .

进入考试题库