“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


\( f\left(x\right)={e}^{x}\mathit{sin}x\).


 \( f\left(x\right)\)  \(\left [ {-\pi ,\pi } \right ]\) 上的极值;




知识点:第五章 一元函数的导数及其应用


参考答案:由 \( {f}^{\text{'}}\left(x\right)={e}^{x}\left(\mathit{sin}x+\mathit{cos}x\right)\le 0\),\(x\in \left [ {-\pi ,\pi } \right ]\) ,得 \( f\left(x\right)\) 的单调减区间是 \(\left [ {-\pi ,-\frac {\pi } {4}} \right ]\),\(\left [ {\frac {3\pi } {4},\pi } \right ]\),

同理, \( f\left(x\right)\) 的单调增区间是 \(\left [ {-\frac {\pi } {4},\frac {3\pi } {4}} \right ]\) .

故\( f\left(x\right)\)的极小值为 \( f\left(-\frac{\pi }{4}\right)=-\frac{\sqrt{2}}{2{e}^{\frac{\pi }{4}}}\) ,极大值为 \( f\left(\frac{3\pi }{4}\right)=\frac{\sqrt{2}}{2}{e}^{\frac{3\pi }{4}}\)

进入考试题库