“微信扫一扫”进入题库练习及模拟考试
若直线\(y=kx\)与曲线\(y={x}^{3}-3{x}^{2}+2x\)相切,求\(k\)的值.
参考答案:设切点坐标为\(\left ( {{x}_{0},{x}^{3}_{0}-3{x}^{2}_{0}+2} \right )\),\({y}^{,}=3{x}^{2}-6x+2\),则\(\left \{ \begin{gathered} {k=3{x}^{2}_{0}-6{x}_{0}+2} \\ {{k{x}_{0}=x}^{3}_{0}-3{x}^{2}_{0}+2{x}_{0}} \end{gathered} \right .\)
解得\(k=2\)或\(-\frac {1} {4}\).