“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


在等差数列 \(\{ {a_n}\} \) 中,已知 \({a_1} + {a_2} + {a_3} = 18\)\({a_4} + {a_5} + {a_6} = 54\)

设 \({b_n} = \frac{4}{{{a_n} \cdot {a_{n + 1}}}}\) ,求数列 \(\{ {b_n}\} \) 的前 \(n\) 项和 \({S_n}\) .



知识点:第四章 数列


参考答案:解:\(\because {b_n} = \frac{4}{{{a_n} \cdot {a_{n + 1}}}} = \frac{4}{{\left( {4n - 2} \right)\left( {4n + 2} \right)}} = \frac{1}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \frac{1}{2}\left( {\frac{1}{{2n - 1}} - \frac{1}{{2n + 1}}} \right)\),\(\therefore {S_n} = \frac{1}{2}\left[ {\left( {1 - \frac{1}{3}} \right) + \left( {\frac{1}{3} - \frac{1}{5}} \right) + \left( {\frac{1}{5} - \frac{1}{7}} \right) + \cdots + \left( {\frac{1}{{2n - 1}} - \frac{1}{{2n + 1}}} \right)} \right] = \frac{1}{2}\left( {1 - \frac{1}{{2n + 1}}} \right) = \frac{n}{{2n + 1}}\).

进入考试题库