“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


设集合 \(S = \left\{ {1,2,3, \cdots ,n} \right\}\left( {n \geqslant 5} \right)\) ,对 \(S\) 的每一个4元子集,将其中的元素从小到大排列并取出每个集合中的第2个数,记取出的所有数的和为 \(F\left( n \right)\)

求证:\({\rm{ }}\frac{{F(n)}}{{C_{n + 1}^5}}{\rm{ }}\) 为定值.



知识点:第四章 数列


参考答案:第2个数为\(k\)时,则在1,2,3,…,\(k - 1\)中取一个数排在第1位,在 \(k + 1\),\(k + 2\) ,…,\(n\) 中取出2个数排在后2位置上,因此,第2个数为\(k\)的4元子集个数为 \(C_{k - 1}^1C_{n - k}^2\) ,其中 \(2 \leqslant k \leqslant n - 2\) ,所以 \(F\left( n \right) = 2C_1^1C_{n - 2}^2 + 3C_2^1C_{n - 3}^2 + \cdots + \left( {n - 2} \right)C_{n - 3}^1C_2^2\) \( = 2\left( {C_2^2C_{n - 2}^2 + C_3^2C_{n - 3}^2 + \cdots + C_{n - 2}^2C_2^2} \right)\) 下面证明: \(C_2^2C_{n - 2}^2 + C_3^2C_{n - 3}^2 + \cdots + C_{n - 2}^2C_2^2 = C_{n + 1}^5\) 当 \(n = 5\) 时,由(1)知等式成立;假设 \(n = k\left( {k \geqslant 5} \right)\) 时,等式成立,即 \(C_2^2C_{k - 2}^2 + C_3^2C_{k - 3}^2 + \cdots + C_{k - 2}^2C_2^2 = C_{k + 1}^5\) 则 \(n = k + 1\) 时,\(C_2^2C_{k - 1}^2 + C_3^2C_{k - 2}^2 + \cdots + C_{k - 1}^2C_2^2\) \( = C_2^2\left( {C_{k - 2}^2 + C_{k - 2}^1} \right) + C_3^2\left( {C_{k - 3}^2 + C_{k - 3}^1} \right) + \cdots + C_{k - 2}^2\left( {C_2^2 + C_2^1} \right) + C_{k - 1}^2C_2^2\) \( = C_2^2C_{k - 2}^2 + C_3^2C_{k - 3}^2 + \cdots + C_{k - 2}^2C_2^2 + \left( {k - 2} \right)C_2^2 + \left( {k - 3} \right)C_3^2 + \cdots + 2C_{k - 2}^2 + C_{k - 1}^2\) \( = C_{k + 1}^5 + \left( {k + 1} \right)\left( {C_2^2 + C_3^2 + \cdots + C_{k - 1}^2} \right) - \left( {3C_2^2 + 4C_3^2 + \cdots + kC_{k - 1}^2} \right)\) \( = C_{k + 1}^5 + \left( {k + 1} \right)C_k^3 - 3\left( {C_3^3 + C_4^3 + \cdots C_k^3} \right)\) \( = C_{k + 1}^5 + 4C_{k + 1}^4 - 3C_{k + 1}^4 = C_{k + 2}^5\) 即 \(n = k + 1\) 时,等式成立.故 \(\frac{{F\left( n \right)}}{{C_{n + 1}^5}} = 2\) .

进入考试题库