“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


若定义 \(f\left( n \right)\)\({n^2} + 1\) 的各位数字之和( \(n \in {N^*}\) ),如 \({13^2} + 1 = 170\) ,则\(f\left( {13} \right) = 1 + 7 + 0 = 8\) ,则 \(\sum\limits_{i = 1}^{2018} {\underbrace {f(f(f( \cdots f}_{i个f}(9) \cdots )))} = \) ___.



知识点:第四章 数列


参考答案:16410


解析:

由题意,\({9^2} + 1 = 82\),所以\(f(9) = 2 + 8 = 10\)

\({10^2} + 1 = 101\),所以\(f(10) = 1 + 0 + 1 = 2\)

\({2^2} + 1 = 5\),所以\(f(2) = 5\)

\({5^2} + 1 = 26\),所以\(f(5) = 2 + 6 = 8\)

\({8^2} + 1 = 65\),所以\(f(8) = 6 + 5 = 11\)

\({11^2} + 1 = 122\),所以\(f(11) = 1 + 2 + 2 = 5\)

所以\(\sum\limits_{i = 1}^{2018} {\underbrace {f(f(f( \cdots f}_{i个f}(9) \cdots )))} \)从第项开始,以周期为\(3\)开始重复,

\(\frac{{2018 - 2}}{3} = 672\),所以一共包含\(672\)个周期以及\(f(1)\)\(f(2)\)

\(f(3) + f(4) + f(5) = 5 + 8 + 11 = 24\)

所以\(\sum\limits_{i = 1}^{2018} {\underbrace {f(f(f( \cdots f}_{i个f}(9) \cdots )))} = 10 + 2 + 24 \times 672 = 16140\).

故答案为:\(16140\)

进入考试题库