由题意,\({9^2} + 1 = 82\),所以\(f(9) = 2 + 8 = 10\),
\({10^2} + 1 = 101\),所以\(f(10) = 1 + 0 + 1 = 2\),
\({2^2} + 1 = 5\),所以\(f(2) = 5\),
\({5^2} + 1 = 26\),所以\(f(5) = 2 + 6 = 8\),
\({8^2} + 1 = 65\),所以\(f(8) = 6 + 5 = 11\),
\({11^2} + 1 = 122\),所以\(f(11) = 1 + 2 + 2 = 5\),
所以\(\sum\limits_{i = 1}^{2018} {\underbrace {f(f(f( \cdots f}_{i个f}(9) \cdots )))} \)从第三项开始,以周期为\(3\)开始重复,
\(\frac{{2018 - 2}}{3} = 672\),所以一共包含\(672\)个周期以及\(f(1)\)和\(f(2)\),
\(f(3) + f(4) + f(5) = 5 + 8 + 11 = 24\),
所以\(\sum\limits_{i = 1}^{2018} {\underbrace {f(f(f( \cdots f}_{i个f}(9) \cdots )))} = 10 + 2 + 24 \times 672 = 16140\).
故答案为:\(16140\)