“微信扫一扫”进入题库练习及模拟考试
给出下列不等式:
用数学归纳法证明你的猜想.
参考答案:证明:①当 \(n = 1,2\) 时显然成立;
②假设 \(n = k\) 时结论成立,即: \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots \ldots + \frac{1}{{{2^k} - 1}} > \frac{k}{2}\) 成立
当 \(n = k + 1\) 时,
\(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots \ldots + \frac{1}{{{2^k} - 1}} + \frac{1}{{{2^k}}} + \ldots \ldots + \frac{1}{{{2^{k + 1}} - 2}} + \frac{1}{{{2^{k + 1}} - 1}}\) \( > \frac{k}{2} + \left( {\frac{1}{{{2^k}}} + \frac{1}{{{2^k} + 1}} + \cdots \cdots + \frac{1}{{{2^{k + 1}} - 2}} + \frac{1}{{{2^{k + 1}} - 1}}} \right)\)
\( > \frac{k}{2} + {2^k} \cdot \frac{1}{{{2^{k + 1}} - 1}} = \frac{k}{2} + \frac{1}{{2 - \frac{1}{{{2^k}}}}} > \frac{k}{2} + \frac{1}{2} = \frac{{k + 1}}{2}\)
即当 \(n = k + 1\) 时结论也成立.由①②可知对任意\(n\in \text{N}_{+}\),结论都成立.