当 \(n = 1\) 时,左边 \( = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\) ,右边 \( = \frac{1}{{1 + 1}} = \frac{1}{2}\),\(\frac{1}{3} > \frac{1}{2}\) 不成立;
当 \(n = 2\) 时,左边 \( = \frac{{{2^2} - 1}}{{{2^2} + 1}} = \frac{3}{5}\) ,右边 \( = \frac{2}{{2 + 1}} = \frac{2}{3}\),\(\frac{3}{5} > \frac{2}{3}\) 不成立;
当 \(n = 3\) 时,左边 \( = \frac{{{2^3} - 1}}{{{2^3} + 1}} = \frac{7}{9} = \frac{{28}}{{36}}\) ,右边 \( = \frac{3}{{3 + 1}} = \frac{3}{4} = \frac{{27}}{{36}}\),\(\frac{7}{9} > \frac{3}{4}\) 成立;
即左边大于右边,不等式成立,
则对任意 \(n > k\)\(\left( {n,k \in {\rm{N}}} \right)\) 的自然数都成立,则\(k\)的最小值为 \(2\) ,
故选:B.