“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


设函数 \(f\left( x \right) = \frac{x}{{x + 2}}\)\((x > 0)\) ,观察:

\({f_1}\left( x \right) = f\left( x \right) = \frac{x}{{x + 2}}\) , \({f_2}\left( x \right) = f\left( {{f_1}\left( x \right)} \right) = \frac{x}{{3x + 4}}\) ,

\({f_3}\left( x \right) = f\left( {{f_2}\left( x \right)} \right) = \frac{x}{{7x + 8}}\) , \({f_4}\left( x \right) = f\left( {{f_3}\left( x \right)} \right) = \frac{x}{{15x + 16}}\) ,…

根据以上事实,归纳:当 \(n \in {N^*}\)  时, \({f_n}\left( x \right)\) 的解析式,并用数学归纳法证明.



知识点:第四章 数列


参考答案:\({f_n}\left( x \right) = \frac{x}{{\left( {{2^n} - 1} \right)x + {2^n}}}\) ,下面用数学归纳法证明:

(1)当 \(n = 1\) 时, \({f_1}\left( x \right) = \frac{x}{{\left( {2 - 1} \right)x + 2}} = \frac{x}{{x + 2}}\) ,此时等式成立;

(2)设当 \(n = k\) 时,有 \({f_k}\left( x \right) = \frac{x}{{\left( {{2^k} - 1} \right)x + {2^k}}}\) ,则当 \(n = k + 1\) 时,

\({f_{k + 1}}\left( x \right) = f\left[ {{f_k}\left( x \right)} \right] = \frac{{\frac{x}{{\left( {{2^k} - 1} \right)x + {2^k}}}}}{{\frac{x}{{\left( {{2^k} - 1} \right)x + {2^k}}} + 2}} = \frac{x}{{\left( {{2^{k + 1}} - 1} \right)x + {2^{k + 1}}}}\) ,

故当 \(n = k + 1\) 时,等式也成立

由(1)、(2)知原等式成立.

进入考试题库