“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


在数列 \(\left\{ {{a_n}} \right\}\) 中, \({a_1} = 1\)\({a_{n + 1}} = \sqrt {{a_n}^2 - 2{a_n} + 2} - 1\)\(\left( {n \in {N^ * }} \right)\)

求 \({a_2}\)\({a_3}\) 的值;



知识点:第四章 数列


参考答案:解:\(\because \)在数列 \(\left\{ {{a_n}} \right\}\) 中, \({a_1} = 1\), \({a_{n + 1}} = \sqrt {{a_n}^2 - 2{a_n} + 2} - 1\)\(\left( {n \in {N^ * }} \right)\) \(\therefore \) \({a_2} = {a_{1 + 1}} = \sqrt {{a_1}^2 - 2{a_1} + 2} - 1 = 0\) , \({a_3} = {a_{2 + 1}} = \sqrt {{a_2}^2 - 2{a_2} + 2} - 1 = \sqrt 2 - 1\) .

进入考试题库