“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知 \(f\left( x \right) = \frac{{{4^x}}}{{{4^x} + 2}}\) ,求 \(f\left( {\frac{1}{{2011}}} \right) + f\left( {\frac{2}{{2011}}} \right) + \cdot \cdot \cdot + f\left( {\frac{{2010}}{{2011}}} \right)\).



知识点:第四章 数列


参考答案:因为 \(f\left( x \right) = \frac{{{4^x}}}{{{4^x} + 2}}\),所以 \(f\left( {1 - x} \right) = \frac{{{4^{1 - x}}}}{{{4^{1 - x}} + 2}} = \frac{4}{{4 + 2 \times {4^x}}} = \frac{2}{{{4^x} + 2}}\),所以 \(f\left( x \right) + f\left( {1 - x} \right) = 1\).令 \(S = f\left( {\frac{1}{{2011}}} \right) + f\left( {\frac{2}{{2011}}} \right) + \cdot \cdot \cdot + f\left( {\frac{{2009}}{{2011}}} \right) + f\left( {\frac{{2010}}{{2011}}} \right)\),倒写得 \(S = f\left( {\frac{{2010}}{{2011}}} \right) + f\left( {\frac{{2009}}{{2011}}} \right) + \cdot \cdot \cdot + f\left( {\frac{2}{{2011}}} \right) + f\left( {\frac{1}{{2011}}} \right)\).两式相加得 \(2S = 2010\),故 \(S = 1005\).

进入考试题库