“微信扫一扫”进入题库练习及模拟考试
已知公差为正数的等差数列
若数列
参考答案:解:由(1),则 \({T_n} = \frac{{1 \times \left( {1 - {2^n}} \right)}}{{1 - 2}} = {2^n} - 1\),设 \({c_n} = {a_n} \cdot {T_n} = n \cdot \left( {{2^n} - 1} \right)\),\({S_n}\) 为数列 \(\left\{ {{c_n}} \right\}\) 的前 \(n\) 项和,所以 \({S_n} = 1 \times \left( {{2^1} - 1} \right) + 2 \times \left( {{2^2} - 1} \right) + 3 \times \left( {{2^3} - 1} \right) + \cdots + n \cdot \left( {{2^n} - 1} \right)\)\( = \left( {1 \times {2^1} + 2 \times {2^2} + 3 \times {2^3} + \cdots + n \cdot {2^n}} \right) - \left( {1 + 2 + 3 + \cdots + n} \right)\),则 \(2{S_n} = \left( {1 \times {2^2} + 2 \times {2^3} + 3 \times {2^4} + \cdots + n \cdot {2^{n + 1}}} \right) - 2 \times \left( {1 + 2 + 3 \cdots + n} \right)\),所以 \(2{S_n} - {S_n} = - \left( {{2^1} + {2^2} + {2^3} + \cdots + {2^n}} \right) + n \cdot {2^{n + 1}} - \left( {1 + 2 + 3 + \cdots + n} \right)\)即 \({S_n} = - \frac{{2 \times \left( {1 - {2^n}} \right)}}{{1 - 2}} + n \cdot {2^{n + 1}} - \frac{{n \cdot \left( {n + 1} \right)}}{2}\)\( = \left( {n - 1} \right) \cdot {2^{n + 1}} + 2 - \frac{{n \cdot \left( {n + 1} \right)}}{2}\),所以数列 \(\left\{ {{a_n} \cdot {T_n}} \right\}\) 的前 \(n\) 项和为 \(\left( {n - 1} \right) \cdot {2^{n + 1}} + 2 - \frac{{n\left( {n + 1} \right)}}{2}\).