“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


在等差数列 \(\{ {a_n}\} \) 中,已知 \({a_1} + {a_2} + {a_3} = 18\)\({a_4} + {a_5} + {a_6} = 54\)

求 \(\{ {a_n}\} \) 的通项公式;



知识点:第四章 数列


参考答案:解:由题意,设等差数列 \(\{ {a_n}\} \) 的公差为 \(d\),
则 \(3{a_1} + 3d = 18\),\(3{a_1} + 12d = 54\),
解得 \({a_1} = 2\),\(d = 4\) \(\therefore \)\({a_n} = 2 + 4(n - 1) = 4n - 2\),\(n \in {N^*}\);

进入考试题库


To Top