“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知数列 \(\left\{ {{a_n}} \right\}\)\({a_1} = 1\)\({a_{n + 1}} + 2{a_n} = {2^{n + 1}},n \in {N^ * }\)

求 \({a_2}\)\({a_3}\)\({a_4}\) ,并求出数列 \(\left\{ {{a_n}} \right\}\) 的通项公式;



知识点:第四章 数列


参考答案:解:由题意,数列 \(\left\{ {{a_n}} \right\}\) 中,\({a_1} = 1\),\({a_{n + 1}} + 2{a_n} = {2^{n + 1}},n \in {N^ * }\),所以 \({a_2} = - 2{a_1} + {2^2} = 2\),\({a_3} = - 2{a_2} + {2^3} = 4\),\({a_4} = - 2{a_3} + {2^4} = 8\),两边同除 \({2^{n + 1}}\),可得 \(\frac{{{a_{n + 1}}}}{{{2^{n + 1}}}} + \frac{{{a_n}}}{{{2^n}}} = 1\),即 \(\frac{{{a_{n + 1}}}}{{{2^{n + 1}}}} = - \frac{{{a_n}}}{{{2^n}}} + 1\),设 \(\frac{{{a_{n + 1}}}}{{{2^{n + 1}}}} + \lambda = - (\frac{{{a_n}}}{{{2^n}}} + \lambda )\),可得 \(\frac{{{a_{n + 1}}}}{{{2^{n + 1}}}} = - \frac{{{a_n}}}{{{2^n}}} - 2\lambda \),令 \( - 2\lambda = 1\),解得 \(\lambda = - \frac{1}{2}\),所以 \(\frac{{{a_{n + 1}}}}{{{2^{n + 1}}}} - \frac{1}{2} = - (\frac{{{a_n}}}{{{2^n}}} - \frac{1}{2})\),因为 \({a_1} = 1\),所以 \(\frac{{{a_{n + 1}}}}{{{2^{n + 1}}}} - \frac{1}{2} = - (\frac{{{a_n}}}{{{2^n}}} - \frac{1}{2}) = \frac{{{a_{n - 1}}}}{{{2^{n - 1}}}} - \frac{1}{2} = - (\frac{{{a_{n - 2}}}}{{{2^{n - 2}}}} - \frac{1}{2}) = \cdots = \frac{{{a_1}}}{2} - \frac{1}{2} = 0\),所以 \(\frac{{{a_n}}}{{{2^n}}} - \frac{1}{2} = 0\),可得 \({a_n} = \frac{1}{2} \times {2^n} = {2^{n - 1}}\),所以数列 \(\left\{ {{a_n}} \right\}\) 的通项公式为 \({a_n} = {2^{n - 1}}\).

进入考试题库