由等比数列的性质可知 \({S_3}\),\({S_6} - {S_3}\),\({S_9} - {S_6}\),\({S_{12}} - {S_9}\),\({S_{15}} - {S_{12}}\) 是等比数列,
由条件可知 \({S_3} = 5\),\({S_9} - {S_6} = 20\),则此等比数列的公比 \({q^2} = \frac{{20}}{5} = 4\),又 \({a_n} > 0\),
所以 \(q = 2\),\({S_{15}} = {S_3} + \left( {{S_6} - {S_3}} \right) + \left( {{S_9} - {S_6}} \right) + \left( {{S_{12}} - {S_9}} \right) + \left( {{S_{15}} - {S_{12}}} \right)\),
所以 \({S_{15}} = \frac{{5\left( {1 - {2^5}} \right)}}{{1 - 2}} = 155\).
故答案为:155