“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


设等比数列 \(\left\{ {{a_n}} \right\}\) 的前\(n\)项和为 \({S_n}\) .若 \({a_n} > 0\)\({S_3} = 5\) , \({a_7} + {a_8} + {a_9} = 20\),则 \({S_{15}} = \)___.



知识点:第四章 数列


参考答案:155


解析:

由等比数列的性质可知 \({S_3}\)\({S_6} - {S_3}\)\({S_9} - {S_6}\)\({S_{12}} - {S_9}\)\({S_{15}} - {S_{12}}\) 是等比数列,

由条件可知 \({S_3} = 5\)\({S_9} - {S_6} = 20\),则此等比数列的公比 \({q^2} = \frac{{20}}{5} = 4\),又 \({a_n} > 0\)

所以 \(q = 2\)\({S_{15}} = {S_3} + \left( {{S_6} - {S_3}} \right) + \left( {{S_9} - {S_6}} \right) + \left( {{S_{12}} - {S_9}} \right) + \left( {{S_{15}} - {S_{12}}} \right)\)

所以 \({S_{15}} = \frac{{5\left( {1 - {2^5}} \right)}}{{1 - 2}} = 155\).

故答案为:155

进入考试题库