“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


数列 \(\left\{ {{a_n}} \right\}\) 满足:\({a_1} + 2{a_2} + 3{a_3} + \cdots + n{a_n} = \)\(2 + (n - 1) \cdot {2^{n + 1}}\)\(n \in {{\mathbf{N}}^*}\)

求数列 \(\left\{ {{a_n}} \right\}\) 的通项公式;



知识点:第四章 数列


参考答案:解:当 \(n \geqslant 2\),\({a_1} + 2{a_2} + 3{a_3} + \cdots + n{a_n}\)\( = 2 + (n - 1) \cdot {2^{n + 1}}\),①\({a_1} + 2{a_2} + \cdots + (n - 1){a_{n - 1}}\)\( = 2 + (n - 2) \cdot {2^n}\),\(n \geqslant 2\),②① -②得 \(n{a_n} = n \cdot {2^n} \Rightarrow {a_n} = {2^n}(n \geqslant 2)\)(*)在①中令 \(n = 1\),得 \({a_1} = 2\),也满足(*),所以 \({a_n} = {2^n}\),\(n \in {{\mathbf{N}}^*}\),

进入考试题库