高中数学选择性必修 第二册(381题)
设数列 \(\left\{ {{a_n}} \right\}\) 的前 n 项和为 \({S_n}\) ,已知 \({a_1} = 2\) ,且\(2\left( {n + 1} \right){a_n} - n{a_{n + 1}} = 0\)\(\left( {n \in {N^ * }} \right)\) ,则下列结论正确的是( )
A.\(\left\{ {n{a_n}} \right\}\) 是等比数列
B.\(\left\{ {\frac{{{a_n}}}{n}} \right\}\) 是等比数列
C.\({a_n} = n \cdot {2^n}\)
D.\({S_n} = \left( {n - 1} \right) \cdot {2^n} + 2\)
知识点:第四章 数列
参考答案:BC
解析:
由题意得 \(\frac{{{a_{n + 1}}}}{{n + 1}} = 2 \cdot \frac{{{a_n}}}{n}\),故 \(\left\{ {\frac{{{a_n}}}{n}} \right\}\) 是首项为2,公比为2的等比数列,
\(\frac{{{a_n}}}{n} = 2 \cdot {2^{n - 1}} = {2^n}\),则 \({a_n} = n \cdot {2^n}\).故B,C正确,A错误
\({S_n} = {2^1} + 2 \cdot {2^2} + \cdots + n \cdot {2^n}\),
\(2{S_n} = {2^2} + 2 \cdot {2^3} + \cdots + n \cdot {2^{n + 1}}\),
两式相减得:\({S_n} = n \cdot {2^{n + 1}} - (2 + {2^2} + \cdots + {2^n}) = \left( {n - 1} \right) \cdot {2^{n + 1}} + 2\),故D错误.
故选:BC