“微信扫一扫”进入题库练习及模拟考试
已知公差不为零的等差数列
记数列
参考答案:因为 \(\frac{{{a_n}}}{{{b_n}}} = \frac{{2n - 1}}{{{2^n}}}\),
则 \({T_n} = \frac{1}{2} + \frac{3}{{{2^2}}} + \frac{5}{{{2^3}}} + \cdots + \frac{{2n - 1}}{{{2^n}}}\),
∴\(\frac{1}{2}{T_n} = \frac{1}{{{2^2}}} + \frac{3}{{{2^3}}} + \frac{5}{{{2^4}}} + \cdots + \frac{{2n - 1}}{{{2^{n + 1}}}}\)两式相减得 \(\frac{1}{2}{T_n} = \frac{1}{2} + 2\left( {\frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + \frac{1}{{{2^4}}} + \cdots + \frac{1}{{{2^n}}}} \right) - \frac{{2n - 1}}{{{2^{n + 1}}}} = \frac{3}{2} - \frac{{2n + 3}}{{{2^{n + 1}}}}\)
所以 \({T_n} = 3 - \frac{{2n + 3}}{{{2^n}}}\)
显然 \({T_n} < 3\),且 \({T_{n + 1}} - {T_n} = \frac{{2n + 1}}{{{2^{n + 1}}}} > 0\),即 \(\left\{ {{T_n}} \right\}\) 为递增数列,
\({T_1} = \frac{1}{2} < 1\),\(1 < {T_2} = \frac{5}{4} < 2\),\(1 < {T_3} = \frac{{15}}{8} < 2\),\({T_4} = \frac{{37}}{{16}} > 2\),所以 \(\left\langle {{T_1}} \right\rangle = 0\),\(\left\langle {{T_2}} \right\rangle = \left\langle {{T_3}} \right\rangle = 1\),\(n \geqslant 4\) 时,\(\left\langle {{T_n}} \right\rangle = 2\),
所以 \(\left\langle {{T_1}} \right\rangle + \left\langle {{T_2}} \right\rangle + \cdots + \left\langle {{T_{10}}} \right\rangle = 16\).