“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知数列\(\left\{ {{a_n}} \right\}\) 中,\({a_1} = {a_2} = 1\),且 \({a_{n + 2}} = {a_{n + 1}} + 2{a_n}\) .记 \({b_n} = {a_{n + 1}} + {a_n}\)

求数列 \(\left\{ {{b_n} + 2n} \right\}\) 的前n项和.



知识点:第四章 数列


参考答案:由(1)知,\({b_n} = {2^n}\),则\({b_n} + 2n = {2^n} + 2n\),令 \(\left\{ {{b_n} + 2n} \right\}\) 的前\(n\)项和为\({S_n}\),则 \({S_n} = \frac{{2 \times \left( {1 - {2^n}} \right)}}{{1 - 2}} + \frac{{n\left( {2 + 2n} \right)}}{2} = {2^{n + 1}} - 2 + {n^2} + n = {2^{n + 1}} + {n^2} + n - 2\).

进入考试题库