“微信扫一扫”进入题库练习及模拟考试
已知
求证:
参考答案:由 \({S_{n + 1}} = {S_n} + 3{a_n} - {2^n}\),得 \({a_{n + 1}} = 3{a_n} - {2^n}\),
∴\({a_2} = 3{a_1} - 2\),
又 ∵\({a_2} + {S_2} = 31\),∴\({a_2} + {a_1} + {a_2} = 2{a_2} + {a_1} = 2\left( {3{a_1} - 2} \right) + {a_1} = 7{a_1} - 4 = 31\),
∴\({a}_{1}=5\),∴\({a_1} - {2^1} = 3 \ne 0\),
∵\(\frac{{{a_{n + 1}} - {2^{n + 1}}}}{{{a_n} - {2^n}}} = \frac{{3{a_n} - {2^n} - {2^{n + 1}}}}{{{a_n} - {2^n}}} = \frac{{3\left( {{a_n} - {2^n}} \right)}}{{{a_n} - {2^n}}} = 3\),
∴\(\left\{ {{a_n} - {2^n}} \right\}\) 是首项为 \({a_1} - {2^1} = 3\),公比为3的等比数列;