“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知 \({S_n}\) 为数列 \(\left\{ {{a_n}} \right\}\) 的前\(n\)项和,且 \({a_2} + {S_2} = 31\)\({S_{n + 1}} = {S_n} + 3{a_n} - {2^n}\)


求证: \(\left\{ {{a_n} - {2^n}} \right\}\) 为等比数列;



知识点:第四章 数列


参考答案:由 \({S_{n + 1}} = {S_n} + 3{a_n} - {2^n}\),得 \({a_{n + 1}} = 3{a_n} - {2^n}\),

∴\({a_2} = 3{a_1} - 2\),

又 ∵\({a_2} + {S_2} = 31\),∴\({a_2} + {a_1} + {a_2} = 2{a_2} + {a_1} = 2\left( {3{a_1} - 2} \right) + {a_1} = 7{a_1} - 4 = 31\),

∴\({a}_{1}=5\),∴\({a_1} - {2^1} = 3 \ne 0\),

∵\(\frac{{{a_{n + 1}} - {2^{n + 1}}}}{{{a_n} - {2^n}}} = \frac{{3{a_n} - {2^n} - {2^{n + 1}}}}{{{a_n} - {2^n}}} = \frac{{3\left( {{a_n} - {2^n}} \right)}}{{{a_n} - {2^n}}} = 3\),

∴\(\left\{ {{a_n} - {2^n}} \right\}\) 是首项为 \({a_1} - {2^1} = 3\),公比为3的等比数列;

进入考试题库