“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知数列 \(\left\{ {{a_n}} \right\}\)\({a_1} = 1\)\({a_{n + 1}} + 2{a_n} = {2^{n + 1}},n \in {N^ * }\)

记 \({S_n}\) 为数列 \(\left\{ {n{a_n}} \right\}\) 的前 \(n\) 项和,求 \({S_n}\) .



知识点:第四章 数列


参考答案:解:由 \({a_n} = {2^{n - 1}}\),可得 \(n{a_n} = n \cdot {2^{n - 1}}\),则 \({S_n} = 1 \cdot {2^0} + 2 \cdot {2^1} + 3 \cdot {2^2} + \cdots + (n - 1) \cdot {2^{n - 2}} + n \cdot {2^{n - 1}}\),可得 \(2{S_n} = 1 \cdot {2^1} + 2 \cdot {2^2} + 3 \cdot {2^3} + \cdots + (n - 1) \cdot {2^{n - 1}} + n \cdot {2^n}\),两式相减得到 \( - {S_n} = 1 + {2^1} + {2^2} + \cdots + {2^{n - 1}} - n \cdot {2^n} = \frac{{1 - {2^n}}}{{1 - 2}} - n \cdot {2^n} = (1 - n) \cdot {2^n} - 1\),所以 \({S_n} = (n - 1) \cdot {2^n} + 1\).

进入考试题库