“微信扫一扫”进入题库练习及模拟考试
已知
求证:数列
参考答案:当 \(n \geqslant 2\) 时,\({a_n} = {S_n} - {S_{n - 1}} = \frac{{{n^2}}}{{{n^2} + 1}}\);
经检验:\({a_1} = \frac{1}{2}\) 也满足 \({a_n} = \frac{{{n^2}}}{{{n^2} + 1}}\),
\(\therefore \)数列 \(\left\{ {{a_n}} \right\}\) 的通项公式为 \({a_n} = \frac{{{n^2}}}{{{n^2} + 1}}\left( {n \in {N^*}} \right)\),
\(\therefore {a_{n + 1}} - {a_n}{\rm{ = }}\frac{{{{\left( {n + 1} \right)}^2}}}{{{{\left( {n + 1} \right)}^2} + 1}} - \frac{{{n^2}}}{{{n^2} + 1}}\)\({\rm{ = }}\frac{{{{\left( {n + 1} \right)}^2}\left( {{n^2} + 1} \right) - {n^2}\left[ {{{\left( {n + 1} \right)}^2} + 1} \right]}}{{\left[ {{{\left( {n + 1} \right)}^2} + 1} \right]\left( {{n^2} + 1} \right)}} = \frac{{2n + 1}}{{\left[ {{{\left( {n + 1} \right)}^2} + 1} \right]\left( {{n^2} + 1} \right)}} > 0\),
\(\therefore {a_n} < {a_{n + 1}}\),
\(\therefore \)数列 \(\left\{ {{a_n}} \right\}\) 是递增数列;