“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知 \({S_n}\) 为数列 \(\left\{ {{a_n}} \right\}\) 的前 \(n\) 项和,且满足 \({a_1} = \frac{1}{2}\)\({S_n} = \frac{{{n^2}}}{{{n^2} + 1}} + {S_{n - 1}}\left( {n \geqslant 2} \right)\)

求证:数列 \(\left\{ {{a_n}} \right\}\) 是递增数列;



知识点:第四章 数列


参考答案:当 \(n \geqslant 2\) 时,\({a_n} = {S_n} - {S_{n - 1}} = \frac{{{n^2}}}{{{n^2} + 1}}\);
经检验:\({a_1} = \frac{1}{2}\) 也满足 \({a_n} = \frac{{{n^2}}}{{{n^2} + 1}}\),
\(\therefore \)数列 \(\left\{ {{a_n}} \right\}\) 的通项公式为 \({a_n} = \frac{{{n^2}}}{{{n^2} + 1}}\left( {n \in {N^*}} \right)\),
\(\therefore {a_{n + 1}} - {a_n}{\rm{ = }}\frac{{{{\left( {n + 1} \right)}^2}}}{{{{\left( {n + 1} \right)}^2} + 1}} - \frac{{{n^2}}}{{{n^2} + 1}}\)\({\rm{ = }}\frac{{{{\left( {n + 1} \right)}^2}\left( {{n^2} + 1} \right) - {n^2}\left[ {{{\left( {n + 1} \right)}^2} + 1} \right]}}{{\left[ {{{\left( {n + 1} \right)}^2} + 1} \right]\left( {{n^2} + 1} \right)}} = \frac{{2n + 1}}{{\left[ {{{\left( {n + 1} \right)}^2} + 1} \right]\left( {{n^2} + 1} \right)}} > 0\),
\(\therefore {a_n} < {a_{n + 1}}\),
\(\therefore \)数列 \(\left\{ {{a_n}} \right\}\) 是递增数列;

进入考试题库