“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知公差不为零的等差数列 \(\left\{ {{a_n}} \right\}\) 和等比数列 \(\left\{ {{b_n}} \right\}\) ,满足\({{b}_{1}}={{a}_{1}}+1=2\) \({b_2} = {a_2} + 1\)\({b_3} = {a_4} + 1\)


求数列 \(\left\{ {{a_n}} \right\}\)\(\left\{ {{b_n}} \right\}\) 的通项公式:



知识点:第四章 数列


参考答案:设 \(\left\{ {{a_n}} \right\}\) 的公差为\(d\),\(\left\{ {{b_n}} \right\}\) 的公比为\(q\),\({b_1} = 2\),\({a_1} = 1\),

由题意可得:\(\left\{ {\begin{array}{*{20}{l}} {2q = 1 + d + 1} \\ {2{q^2} = 1 + 3d + 1} \end{array}} \right.\),整理可得:\({q^2} - 3q + 2 = 0\),

解得:\(\left\{ {\begin{array}{*{20}{l}} {q = 2} \\ {d = 2} \end{array}} \right.\) 或 \(\left\{ {\begin{array}{*{20}{l}} {q = 1} \\ {d = 0} \end{array}} \right.\)(舍)

所以 \({a_n} = 1 + \left( {n - 1} \right) \times 2 = 2n - 1\),\({b_n} = 2 \cdot {2^{n - 1}} = {2^n}\);

进入考试题库