“微信扫一扫”进入考试题库练习及模拟考试

高中数学必修 第一册(648题)


第241题



参考答案:设\({x}_{1},{x}_{2}\)是R上的两个任意实数,且\({x}_{1}<{x}_{2}\),则\(f({x}_{1})-f({x}_{2})=({x}^{3}_{1}+{x}_{1})-({x}^{3}_{2}+{x}_{2})\)

\(=({x}^{3}_{1}-{x}^{3}_{2})+({x}_{1}-{x}_{2})=({x}_{1}-{x}_{2})({x}^{2}_{1}+{x}_{1}{x}_{2}+{x}^{2}_{2})+({x}_{1}-{x}_{2})=({x}_{1}-{x}_{2})({x}^{2}_{1}+{x}_{1}{x}_{2}+{x}^{2}_{2}+1)\)

\(=\left ( {{x}_{1}-{x}_{2}} \right )\left [ {\left ( {{x}_{1}+\frac {{x}_{2}} {2}} \right )^{2}+\frac {3} {4}{x}^{2}_{2}+1} \right ]\),\(∵{x}_{1}<{x}_{2},∴{x}_{1}-{x}_{2}<0\)而\(\left ( {{x}_{1}+\frac {{x}_{2}} {2}} \right )^{2}+\frac {3} {4}{x}^{2}_{2}+1>0\),\(\therefore f({x}_{1})-f({x}_{2})<0\),

即\(f({x}_{1})<f({x}_{2})\).\(\therefore f\left ( {x} \right )={x}^{3}+x\)在R上是增函数.


第242题



参考答案:定义域是R,内层函数是\(t={x}^{2}+1\),外层函数是\(y=\frac {1} {t}\),单调递增区间是\((-∞,0]\),单调递减区间是\([0,+∞)\).


第243题



参考答案:定义域是\((-∞,0]∪[2,+∞)\),内层函数是\(t={x}^{2}-2x\),外层函数是\(y=\sqrt {t}\),单调递增区间是\([2,+∞)\),单调递减区间是\((-∞,0]\).


第244题



参考答案:设\(m≤{x}_{1}<{x}_{2}≤n\),\(∵g(x)\)是\([m,n]\)上的减函数,且\(a≤g(x)≤b\),\(∴b≥g({x}_{1})>g({x}_{2})≥a\)

又\(∵f(x)\)是\([a,b]\)上的增函数,\(∴f(g({x}_{1}))>f(g({x}_{2}))\).由函数的单调性定义知,\(f(g(x))\)在\([m,n]\)上是减函数.


第245题



参考答案:由\(1-2x≥0\),得\(x≤\frac {1} {2}\),定义域为\((-\infty ,\frac {1} {2}]\),而函数\( y=\sqrt{1-2x}\)是由\(y=\sqrt {t}\)及\(t=1-2x\)复合而成的.

在\((-\infty ,\frac {1} {2}]\)上,\(t=1-2x\)是减函数,\(y=\sqrt {t}\)是增函数,所以\( y=\sqrt{1-2x}\)在\((-\infty ,\frac {1} {2}]\)上是减函数,即\( y=\sqrt{1-2x}\)的单调递减区间为\((-\infty ,\frac {1} {2}]\).


第246题



参考答案:\(∵f(x)\)是定义在\((-3,3)\)上的减函数,\(f(2x-3)>f(x+1)\),∴得出不等式组\(\left \{ \begin{gathered} {-3<2x-3<3} \\ {-3<x+1<3} \\ {2x-3<x+1} \end{gathered} \right .\)∴\(\left \{ \begin{gathered} {0<x<3} \\ {-4<x<2} \\ {x<4} \end{gathered} \right .\),故\(x\)的取值范围是\((0,2)\).


第247题



参考答案:由题意可得\( 1>1-a>{a}^{2}-1>-1\),即\( \left\{\begin{array}{c}1>1-a\\ 1-a>{a}^{2}-1\\ {a}^{2}-1>-1\end{array}\right.\)解得\(0<a<1\),则\(a\)的取值范围为\((0,1)\).


第248题



参考答案:由题意可知,\(f(x)\)图象的对称轴为\(x=2\),故\(f(1)=f(3)\).\(∵f(x)\)在\([2,+∞)\)上是增函数(图象开口向上),\(∴f(2)<f(3)<f(4)\),即\(f(2)<f(1)<f(4)\).


第249题



参考答案:∵\( {a}^{2}-a+1={\left(a-\frac{1}{2}\right)}^{2}+\frac{3}{4}\ge \frac{3}{4}\),
∴\( \frac{3}{4}\)与\( {a}^{2}-a+1\)都是区间\((0,+∞)\)上的值.
\(∵f(x)\)在区间\((0,+∞)\)上单调递减,
\(∴f\left ( {\frac {3} {4}} \right )\ge f\left ( {{a}^{2}-a+1} \right )\).





第253题


A.\(\left( { - \infty ,1} \right)\)

B.\(\left( { - \frac{1}{3},1} \right)\)

C.\(\left( { - 1,\frac{1}{3}} \right)\)

D.\(\left( { - \infty , - \frac{1}{3}} \right) \cup \left( {1, + \infty } \right)\)


参考答案:B


第254题


A.\(f\left( {2.7} \right) < f\left( { - 3} \right) < f\left( { - 2} \right)\)

B.\(f\left( { - 2} \right) < f\left( {2.7} \right) < f\left( { - 3} \right)\)

C.\(f\left( { - 3} \right) < f\left( { - 2} \right) < f\left( {2.7} \right)\)

D.\(f\left( { - 3} \right) < f\left( {2.7} \right) < f\left( { - 2} \right)\)


参考答案:D


第255题


A.\(f\left( x \right) = \left( {x - 1} \right)\sqrt {\frac{{1 + x}}{{x - 1}}} \)是偶函数

B.\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {{x^2} + x,x < 0} \\ { - {x^2} + x,x > 0} \end{array}} \right.\)是奇函数

C.\(f\left( x \right) = \sqrt {3 - {x^2}} + \sqrt {{x^2} - 3} \)是奇函数

D.\(f\left( x \right) = \frac{{\sqrt {1 - {x^2}} }}{{\left| {x + 3} \right| - 3}}\)是非奇非偶函数


参考答案:BC


第256题


A.存在实数\(a\),使得函数\(f\left( x \right)\)为奇函数

B.存在实数\(a\),使得函数\(f\left( x \right)\)为偶函数

C.当\(a > 0\)时,\(f\left( x \right)\)的单调增区间为\(\left( { - \infty ,\frac{a}{2}} \right)\),\(\left( {a, + \infty } \right)\)

D.当\(a < 0\)时,\(f\left( x \right)\)的单调减区间为\(\left( {\frac{a}{2},a} \right)\)


参考答案:AC






进入题库练习及模拟考试