“微信扫一扫”进入考试题库练习及模拟考试

高中数学必修 第一册(648题)


第281题



参考答案:由\(\mathrm{x}-1\ge 0\)得\( \mathrm{x}\ge 1\),即函数定义域为\([1,+\infty )\).因为函数\(y=2x\)与\( \mathrm{y}=\sqrt{x-1}\)在\([1,+\infty )\)上都是增函数,所以\(y=2x+\sqrt {x-1}\)在\([1,+\infty )\)上是增函数.所以当\(x=1\)时,\({y}_{\text{min}}=2\times 1+\sqrt {1-1}=2\),即函数的最小值为2,没有最大值


第282题



参考答案:①\(∀{x}_{1},{x}_{2}∈[1,2]\),且\({x}_{1}<{x}_{2}\),则\(f\left ( {{x}_{1}} \right )-f\left ( {{x}_{2}} \right )={x}_{1}-{x}_{2}+\frac {4} {{x}_{1}}-\frac {4} {{x}_{2}}=\left ( {{x}_{1}-{x}_{2}} \right )\left ( {1-\frac {4} {{x}_{1}{x}_{2}}} \right )=\frac {\left ( {{x}_{1}-{x}_{2}} \right )\left ( {{x}_{1}{x}_{2}-4} \right )} {{x}_{1}{x}_{2}}\).\( {\because x}_{1}<{x}_{2}\), \( \therefore {x}_{1}-{x}_{2}<0\).

当\( 1\le {x}_{1}<{x}_{2}\le 2\)时,\( {x}_{1}{x}_{2}>0\),\( 1<{x}_{1}{x}_{2}<4\),即\( {x}_{1}{x}_{2}-4<0\).\( \mathrm{ }\therefore \mathrm{f}\left({x}_{1}\right)>f\left({x}_{2}\right)\),即\(f(x)\)在区间\([1,2]\)上单调递减.

②由①知\(f(x)\)在区间\([1,2]\)上的最小值为\(f(2)\),最大值为\(f(1)\).\(∵f(1)=1+4=5\),\(f\left ( {2} \right )=2+\frac {4} {2}=4\),\(\therefore f(x)\)在区间\([1,2]\)上的最小值为4,最大值为5



第284题



参考答案:\(f\left ( {x} \right )=a\left ( {{x}^{2}+2x} \right )+1=a\left ( {x+1} \right )^{2}-a+1\).

①若\(a<0\),则当\(x=-1\)时,\(f\left ( {x} \right )_{\text{max}}=4\),\(∴a=-3\).

②\(a>0\)若,则当\(x=2\)时,\(f\left ( {x} \right )_{\text{max}}=4\),\(\therefore a=\frac {3} {8}\).

\(∴a\)的取值为\(-3\)或\( \frac{3}{8}\).


第285题



参考答案:当\(x∈[3,4]\)时,\(f(x)\)为增函数,最小值为\(f(3)=-7\),最大值为\(f(4)=-4\).


第286题



参考答案:\( f\left(x\right)={\left(x-2\right)}^{2}-8\)在\([-3,2]\)上是减函数,在\([2,4]\)上是增函数,\(∴\)最小值为\(f(2)=-8\)

又\(f(-3)=17\),\(f(4)=-4\),(也可以通过比较\(-3\)和4与对称轴\(x=2\)的距离,抛物线开口向上时,哪一个距离对称轴远哪一个对应的函数值就较大,抛物线开口向下时,哪一个距离对称轴近哪一个对应的函数值就较大)

\(∴\)最大值为17.


第287题



参考答案:令\( \sqrt{x+1}=t\),则\( \mathrm{x}={t}^{2}-1\left(t\ge 0\right)\),所以\( \mathrm{y}={t}^{2}-t-1\left(t\ge 0\right)\).又\( \mathrm{y}={t}^{2}-t-1\)在\( \left[0,\frac{1}{2}\right]\)上单调递减,在\( [\frac{1}{2},+\mathrm{\infty })\)上单调递增,所以\({y}_{\text{min}}=\left ( {\frac {1} {2}} \right )^{2}-\frac {1} {2}-1=-\frac {5} {4}\),无最大值.

故函数\( y=x-\sqrt{x+1}\)的最小值为\( -\frac{5}{4}\),无最大值


第288题



参考答案:\( y=\frac{{x}^{2}+8}{x-1}=\frac{{x}^{2}-1+9}{x-1}=\left(x+1\right)+\frac{9}{x-1}=\left(x-1\right)+\frac{9}{x-1}+2\).

\(∵x>1\),\(∴x-1>0\),\(\therefore \left ( {x-1} \right )+\frac {9} {x-1}+2\ge 2\sqrt {\left ( {x-1} \right )\cdot \frac {9} {x-1}}+2=8\).当且仅当\( x-1=\frac{9}{x-1}\),即\(x=4\)时等号成立.\(∴y\)有最小值8.



第290题



参考答案:令\(f(x) = {x^{\frac{5}{3}}} = \sqrt[3]{{{x^5}}}\),定义域为\(\operatorname{R} \),因为\(f( - x) = - \sqrt[3]{{{x^5}}} = - f(x)\),所以函数\(f\left ( {x} \right )\)为奇函数,且在\((0, + \infty )\)上单调递增,所以\(f\left ( {x} \right )\)在\(\operatorname{R} \)上单调递增,故值域为\(\operatorname{R} \).

令\(g(x) = {x^{\frac{1}{5}}} = \sqrt[5]{x}\),定义域为\(\operatorname{R} \),因为\(g( - x) = - \sqrt[5]{x} = - g(x)\),所以函数\(g(x)\)为奇函数,且在\((0, + \infty )\)上单调递增,所以\(g(x)\)在\(\operatorname{R} \)上单调递增,故值域为\(\operatorname{R} \).








第297题



参考答案:由题意,函数\(f\left( x \right) = {x^{4m - {m^2}}}\)(\(m \in Z\))的图像关于\(y\)轴对称,且\(f\left( 2 \right) < f\left( 3 \right)\),所以在区间\((0, + \infty )\)为单调递增函数,所以\({m^2} - 4m < 0\),解得\(0 < m < 4\),由\(m \in Z\),\(m = 1,2,3\)。又函数\(f\left( x \right) = {x^{4m - {m^2}}}\)的图像关于\(y\)轴对称,所以\(4m - {m^2}\)为偶数,所以\(m = 2\),所以\(f\left( x \right) = {x^4}\).


第298题



参考答案:因为函数\(f\left( x \right) = {x^4}\)图象关于\(y\)轴对称,且在区间\((0, + \infty )\)为单调递增函数,

所以不等式\(f\left( {a + 2} \right) < f\left( {1 - 2a} \right)\),等价于\(|a + 2| < |1 - 2a|\),

解得\(a>3\)或\(a < - \frac{1}{3}\),

所以实数\(a\)的取值范围是\(( - \infty , - \frac{1}{3}) \cup (3, + \infty )\).


第299题



参考答案:因为\(f\left ( {x} \right )={x}^{-\frac {1} {2}}\)的定义域为\((0,+∞)\),且在\((0,+∞)\)上单调递减,所以\(\left \{ \begin{gathered} {a+1>0} \\ {3-2a>0} \\ {a+1>3-2a} \end{gathered} \right .\)

得\(\frac {2} {3}<a<\frac {3} {2}\)


第300题


A.\(f(a)<f(b)<f\left ( {\frac {1} {a}} \right )<f\left ( {\frac {1} {b}} \right )\)

B.\(f\left ( {\frac {1} {a}} \right )<f\left ( {\frac {1} {b}} \right )<f(b)<f(a)\)

C.\(f(a)<f(b)<f\left ( {\frac {1} {b}} \right )<f\left ( {\frac {1} {a}} \right )\)

D.\(f\left ( {\frac {1} {a}} \right )<f(a)<f\left ( {\frac {1} {b}} \right )<f(b)\)


参考答案:C


进入题库练习及模拟考试