“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


写出函数\(y = {x^{\frac{5}{3}}}\)\(y = {x^{\frac{1}{5}}}\)的定义域和值域.



知识点:第三章 函数的概念与性质


参考答案:令\(f(x) = {x^{\frac{5}{3}}} = \sqrt[3]{{{x^5}}}\),定义域为\(\operatorname{R} \),因为\(f( - x) = - \sqrt[3]{{{x^5}}} = - f(x)\),所以函数\(f\left ( {x} \right )\)为奇函数,且在\((0, + \infty )\)上单调递增,所以\(f\left ( {x} \right )\)在\(\operatorname{R} \)上单调递增,故值域为\(\operatorname{R} \).

令\(g(x) = {x^{\frac{1}{5}}} = \sqrt[5]{x}\),定义域为\(\operatorname{R} \),因为\(g( - x) = - \sqrt[5]{x} = - g(x)\),所以函数\(g(x)\)为奇函数,且在\((0, + \infty )\)上单调递增,所以\(g(x)\)在\(\operatorname{R} \)上单调递增,故值域为\(\operatorname{R} \).

进入考试题库