“微信扫一扫”进入题库练习及模拟考试
已知函数
①判断
②根据
参考答案:①\(∀{x}_{1},{x}_{2}∈[1,2]\),且\({x}_{1}<{x}_{2}\),则\(f\left ( {{x}_{1}} \right )-f\left ( {{x}_{2}} \right )={x}_{1}-{x}_{2}+\frac {4} {{x}_{1}}-\frac {4} {{x}_{2}}=\left ( {{x}_{1}-{x}_{2}} \right )\left ( {1-\frac {4} {{x}_{1}{x}_{2}}} \right )=\frac {\left ( {{x}_{1}-{x}_{2}} \right )\left ( {{x}_{1}{x}_{2}-4} \right )} {{x}_{1}{x}_{2}}\).\( {\because x}_{1}<{x}_{2}\), \( \therefore {x}_{1}-{x}_{2}<0\).
当\( 1\le {x}_{1}<{x}_{2}\le 2\)时,\( {x}_{1}{x}_{2}>0\),\( 1<{x}_{1}{x}_{2}<4\),即\( {x}_{1}{x}_{2}-4<0\).\( \mathrm{ }\therefore \mathrm{f}\left({x}_{1}\right)>f\left({x}_{2}\right)\),即\(f(x)\)在区间\([1,2]\)上单调递减.
②由①知\(f(x)\)在区间\([1,2]\)上的最小值为\(f(2)\),最大值为\(f(1)\).\(∵f(1)=1+4=5\),\(f\left ( {2} \right )=2+\frac {4} {2}=4\),\(\therefore f(x)\)在区间\([1,2]\)上的最小值为4,最大值为5