“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)



已知函数 \( f\left(x\right)=x+\frac{4}{x}\).



判断 \( f\left(x\right)\) 在区间\([1,2]\)上的单调性;



②根据 \( f\left(x\right)\) 的单调性求出 \( f\left(x\right) 在\)区间\([1,2]\)上的最值.




知识点:第三章 函数的概念与性质


参考答案:①\(∀{x}_{1},{x}_{2}∈[1,2]\),且\({x}_{1}<{x}_{2}\),则\(f\left ( {{x}_{1}} \right )-f\left ( {{x}_{2}} \right )={x}_{1}-{x}_{2}+\frac {4} {{x}_{1}}-\frac {4} {{x}_{2}}=\left ( {{x}_{1}-{x}_{2}} \right )\left ( {1-\frac {4} {{x}_{1}{x}_{2}}} \right )=\frac {\left ( {{x}_{1}-{x}_{2}} \right )\left ( {{x}_{1}{x}_{2}-4} \right )} {{x}_{1}{x}_{2}}\).\( {\because x}_{1}<{x}_{2}\), \( \therefore {x}_{1}-{x}_{2}<0\).

当\( 1\le {x}_{1}<{x}_{2}\le 2\)时,\( {x}_{1}{x}_{2}>0\),\( 1<{x}_{1}{x}_{2}<4\),即\( {x}_{1}{x}_{2}-4<0\).\( \mathrm{ }\therefore \mathrm{f}\left({x}_{1}\right)>f\left({x}_{2}\right)\),即\(f(x)\)在区间\([1,2]\)上单调递减.

②由①知\(f(x)\)在区间\([1,2]\)上的最小值为\(f(2)\),最大值为\(f(1)\).\(∵f(1)=1+4=5\),\(f\left ( {2} \right )=2+\frac {4} {2}=4\),\(\therefore f(x)\)在区间\([1,2]\)上的最小值为4,最大值为5

进入考试题库