“微信扫一扫”进入考试题库练习及模拟考试
参考答案:\(x\left( {x - 1} \right)\)
参考答案:\( - 4\)
参考答案:证明:函数\(f\left( x \right)\)的定义域为\({\mathbf{R}}\),关于原点对称,因为函数\(f\left( x \right)\)对任意\(x,\;\;y \in {\mathbf{R}}\),都有\(f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)\),令\(x = y = 0\),则\(f\left( 0 \right) = 2f\left( 0 \right)\),得\(f\left( 0 \right) = 0\),令\(y = - x\),则\(f\left( 0 \right) = f\left( x \right) + f\left( { - x} \right)\),所以\(f\left( x \right) + f\left( { - x} \right) = 0\),即\(f\left( { - x} \right) = - f\left( x \right)\),所以\(f\left( x \right)\)为奇函数.
参考答案:奇函数
\(f\left( x \right)\)的定义域是\(\left( { - \infty ,0} \right) \cup \left( {0, + \infty } \right)\),关于原点对称,
又\(f\left( { - x} \right) = {\left( { - x} \right)^3} - \frac{1}{{ - x}} = - \left( {{x^3} - \frac{1}{x}} \right) = - f\left( x \right)\),所以\(f\left( x \right)\)是奇函数.
参考答案:既不是奇函数也不是偶函数
因为\(f\left( x \right)\)的定义域为\(\left[ { - 1,1} \right)\),不关于原点对称,
所以\(f\left( x \right)\)既不是奇函数也不是偶函数.
参考答案:既是奇函数又是偶函数
因为\(f\left( x \right)\)的定义域为\(\left\{ { - \sqrt 3 ,\sqrt 3 } \right\}\),所以\(f\left( x \right) = 0\),
则\(f\left( x \right)\)既是奇函数又是偶函数.
参考答案:
偶函数
方法一(定义法) 因为函数
①当x>1时,
②当
③当
综上,可知函数
方法二(图象法) 作出函数
A.\(\left( {3, + \infty } \right)\)
B.\(\left( { - \infty , - 1} \right) \cup \left( {0,3} \right)\)
C.\(\left( { - 1, + \infty } \right)\)
D.\(\left( { - 3,0} \right) \cup \left( {1, + \infty } \right)\)
参考答案:B
A.\(f\left( x \right)\)的图象关于直线\(x = 1\)对称
B.\(f\left( x \right)\)在\(\left[ {0,1} \right]\)上是增函数
C.\(f\left( x \right)\)在\(\left[ {1,2} \right]\)上是减函数
D.\(f\left( 2 \right) = f\left( 0 \right)\)
参考答案:AD
A.\(f\left( x \right)\)的图象关于直线\(x=-1\)对称
B.\(f\left( x \right)\)在\(( - 1, + \infty )\)上为增函数
C.\(f\left( 1 \right) = f\left( { - 2} \right)\)
D.\(f\left( { - 3} \right) < f\left( 0 \right) < f\left( { - \frac{1}{2}} \right)\)
参考答案:AD
A.\(\left( {1,\frac{5}{3}} \right)\)
B.\(\left( { - \infty ,1} \right) \cup \left( {\frac{5}{3}, + \infty } \right)\)
C.\(\left( { - \infty ,1} \right)\)
D.\(\left( {1, + \infty } \right)\)
参考答案:B
参考答案:\(\sin \pi x\)(答案不唯一)
A.\(f\left( {16} \right) < f\left( { - 17} \right) < f\left( {18} \right)\)
B.\(f\left( {18} \right) < f\left( {16} \right) < f\left( { - 17} \right)\)
C.\(f\left( {16} \right) < f\left( {18} \right) < f\left( { - 17} \right)\)
D.\(f\left( { - 17} \right) < f\left( {16} \right) < f\left( {18} \right)\)
参考答案:D
A.\(f\left( x \right)\)是偶函数
B.\(f\left( x \right)\)是周期函数
C.\(f\left( {\frac{{99}}{2}} \right) = - 1\)
D.\(x \in \left[ { - 1,0} \right)\)时,\(f\left( x \right) = x\)
参考答案:AB
A.\( - 1\)
B.\( - 2\)
C.0
D.2
参考答案:A
A.0
B.1
C.\(-1\)
D.\(\frac{1}{2}\)
参考答案:B
参考答案:\( - 1\)
A.\(f\left( x \right)\)为奇函数
B.\(f\left( x \right)\)周期为2
C.\(f\left( {\frac{9}{2}} \right) = 1\)
D.\(f\left( {x - 2} \right)\)是奇函数
参考答案:AD
参考答案:4
A.\(f\left ( {x} \right )\)为周期函数
B.\(f\left ( {x} \right )\)为\({\rm{R}}\)上的偶函数
C.\(f\left ( {x} \right )\)为\({\rm{R}}\)上的单调函数
D.\(f\left ( {x} \right )\)的图象关于点\(\left( { - \frac{3}{4},0} \right)\)对称
参考答案:ABD