“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


设函数\(f\left( x \right)\)对任意\(x,\;\;y \in {\mathbf{R}}\),都有\(f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)\),证明:\(f\left( x \right)\)为奇函数.



知识点:第三章 函数的概念与性质


参考答案:证明:函数\(f\left( x \right)\)的定义域为\({\mathbf{R}}\),关于原点对称,因为函数\(f\left( x \right)\)对任意\(x,\;\;y \in {\mathbf{R}}\),都有\(f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)\),令\(x = y = 0\),则\(f\left( 0 \right) = 2f\left( 0 \right)\),得\(f\left( 0 \right) = 0\),令\(y = - x\),则\(f\left( 0 \right) = f\left( x \right) + f\left( { - x} \right)\),所以\(f\left( x \right) + f\left( { - x} \right) = 0\),即\(f\left( { - x} \right) = - f\left( x \right)\),所以\(f\left( x \right)\)为奇函数.

进入考试题库