“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)



证明:函数 \( f\left(x\right)={x}^{3}+x\) 在 \( \mathbf{R}\) 上是增函数.




知识点:第三章 函数的概念与性质


参考答案:设\({x}_{1},{x}_{2}\)是R上的两个任意实数,且\({x}_{1}<{x}_{2}\),则\(f({x}_{1})-f({x}_{2})=({x}^{3}_{1}+{x}_{1})-({x}^{3}_{2}+{x}_{2})\)

\(=({x}^{3}_{1}-{x}^{3}_{2})+({x}_{1}-{x}_{2})=({x}_{1}-{x}_{2})({x}^{2}_{1}+{x}_{1}{x}_{2}+{x}^{2}_{2})+({x}_{1}-{x}_{2})=({x}_{1}-{x}_{2})({x}^{2}_{1}+{x}_{1}{x}_{2}+{x}^{2}_{2}+1)\)

\(=\left ( {{x}_{1}-{x}_{2}} \right )\left [ {\left ( {{x}_{1}+\frac {{x}_{2}} {2}} \right )^{2}+\frac {3} {4}{x}^{2}_{2}+1} \right ]\),\(∵{x}_{1}<{x}_{2},∴{x}_{1}-{x}_{2}<0\)而\(\left ( {{x}_{1}+\frac {{x}_{2}} {2}} \right )^{2}+\frac {3} {4}{x}^{2}_{2}+1>0\),\(\therefore f({x}_{1})-f({x}_{2})<0\),

即\(f({x}_{1})<f({x}_{2})\).\(\therefore f\left ( {x} \right )={x}^{3}+x\)在R上是增函数.

进入考试题库