“微信扫一扫”进入考试题库练习及模拟考试

高中数学必修 第一册(648题)


第501题



参考答案:\(\because \left ( {\sin {x-\cos {x}}} \right )^{2}=1-2\cos {x}\sin {x}=\frac {49} {25}\),

\(\therefore \)\(\sin x - \cos x = \pm \frac{7}{5}\)

\(\because x\)为第四象限角, \(\sin x < 0\) ,\(\cos x > 0\)

\(\therefore \sin {x}-\cos {x}<0,\therefore \sin {x}-\cos {x}=-\frac {7} {5}\),联立\(\cos {x}+\sin {x}=\frac {1} {5}\)得:\(\left \{ \begin{array}{*{20}{l}} {\sin {x}=-\frac {3} {5}} \\ {\cos {x}=\frac {4} {5}} \end{array} \right .\)

\(\therefore \)\(\tan x = \frac{{\sin x}}{{\cos x}} = - \frac{3}{4}\).


解析:








第506题



参考答案:由题意得,\(f(\alpha ) = \frac{{\cos \alpha \cdot ( - \cos \alpha ) \cdot ( - \sin \alpha )}}{{ - \cos \alpha \cdot \cos \alpha \cdot ( - \tan \alpha )}} = \cos \alpha \);


解析:




第507题



参考答案:若\(f(\frac{\pi }{3} - \alpha ) = \frac{1}{3}\),则\(\cos (\frac{\pi }{3} - \alpha ) = \frac{1}{3}\),

\(\therefore \)\({\cos^{2}}(\frac {\pi } {6}+\alpha )={\cos^{2}}\left [ {\frac {\pi } {2}-(\frac {\pi } {3}-\alpha )} \right ]={\sin^{2}}(\frac {\pi } {3}-\alpha )=1-{\cos^{2}}(\frac {\pi } {3}-\alpha )=1-\frac {1} {9}=\frac {8} {9}\),

\(\cos {(}\frac {2\pi } {3}+\alpha )=\cos {\left [ {\pi -(\frac {\pi } {3}-\alpha )} \right ]}=-\cos {(}\frac {\pi } {3}-\alpha )=-\frac {1} {3}\),

则 \({\cos ^2}(\frac{\pi }{6} + \alpha ) + \cos (\frac{{2\pi }}{3} + \alpha ) = \frac{8}{9} - \frac{1}{3} = \frac{5}{9}\).


解析:




第508题



参考答案:\(\because f\left ( {α} \right )=\frac {\cos {\left ( {\frac {\pi } {2}+α} \right )\sin {\left ( {α-\frac {\pi } {2}} \right )}}} {\cos {\left ( {-\pi -α} \right )\tan {\left ( {\pi -α} \right )}}}=\frac {\left ( {-\sin {α}} \right )\left ( {-\cos {α}} \right )} {\left ( {-\cos {α}} \right )\left ( {-\tan {α}} \right )}=\cos {α}\)

\(\therefore f\left ( {\frac {2017\pi } {3}} \right )=\cos {\left ( {672\pi +\frac {\pi } {3}} \right )}=\cos {\frac {\pi } {3}}=\frac {1} {2}\)


第509题

\(\tan {θ=2}\),求\(\frac {\cos {\left ( {2\pi -θ} \right )}} {\cos {\left ( {\pi +θ} \right )\sin {\left ( {\frac {\pi } {2}+θ} \right )-\sin {\left ( {\frac {3\pi } {2}+θ} \right )}}}}+\frac {\cos {\left ( {\pi -θ} \right )}} {\cos {θ\left [ {\sin {\left ( {\frac {3\pi } {2}-θ} \right )-1}} \right ]}}\)的值.



参考答案:\(\frac {\cos {\left ( {2\pi -θ} \right )}} {\cos {\left ( {\pi +θ} \right )\sin {\left ( {\frac {\pi } {2}+θ} \right )-\sin {\left ( {\frac {3\pi } {2}+θ} \right )}}}}+\frac {\cos {\left ( {\pi -θ} \right )}} {\cos {θ\left [ {\sin {\left ( {\frac {3\pi } {2}-θ} \right )-1}} \right ]}}\)

\(=\frac {\cos {θ}} {\left ( {-\cos {θ}} \right )\cos {θ-\left ( {-\cos {θ}} \right )}}+\frac {-\cos {θ}} {\cos {θ\left ( {-\cos {θ-1}} \right )}}=\frac {1} {1-\cos {θ}}+\frac {1} {1+\cos {θ}}=\frac {2} {\sin^{2} {θ}}=2+\frac {2} {\tan^{2} {θ}}=2+\frac {2} {{2}^{2}}=\frac {5} {2}\)




第512题



参考答案:\(\because \cos {α=-\frac {4} {5}}\),且\(\tan \alpha > 0\),则\(\alpha \)为第三象限角,

\(\therefore \sin \alpha = - \sqrt {1 - co{s^2}\alpha } = - \sqrt {1 - {{( - \frac{4}{5})}^2}} = - \frac{3}{5}\),\(\therefore \tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{3}{4}\);


解析:




第513题



参考答案:\(\frac{{2\sin (\pi - \alpha ) + \sin (\frac{\pi }{2} - \alpha )}}{{\cos (2\pi - \alpha ) + \cos ( - \alpha )}} = \frac{{2\sin \alpha + \cos \alpha }}{{\cos \alpha + \cos \alpha }} = \frac{{2\sin \alpha + \cos \alpha }}{{2\cos \alpha }}\) \( = \frac{{2\tan \alpha + 1}}{2} = \frac{{2 \times \frac{3}{4} + 1}}{2} = \frac{5}{4}\)


解析:





第515题



参考答案:\(f(\theta )=\frac {\sin {θ}} {\sin {θ}\cdot \left ( {-\sin {θ}} \right )\cdot \left ( {-\cos {θ}} \right )\cdot \left ( {-\frac {\sin {θ}} {\cos {θ}}} \right )}=-\frac {1} {\sin^{2} {θ}}\).


解析:




第516题



参考答案:由\(f(\theta ) = - 3\),有\(\sin^{2} {θ}=\frac {1} {3}\),得\(3\sin^{2} {θ}=\sin^{2} {θ}+\cos^{2} {θ}\),\(\tan^{2} {θ}=\frac {1} {2}\)

可得\(\tan \theta = \pm \frac{{\sqrt 2 }}{2}\).


解析:




第517题



参考答案:\(\because \) 角\(\alpha \)终边上有一点,

又\(\sin \alpha = \frac{{\sqrt 2 }}{4}m = \frac{m}{{\sqrt {3 + {m^2}} }}\),所以\(m = \pm \sqrt 5 \).

当\(m = \sqrt 5 \)时,\(\cos \alpha = \frac{{ - \sqrt 3 }}{{\sqrt {3 + {m^2}} }} = - \frac{{\sqrt 6 }}{4}\),\(\tan \alpha = \frac{m}{{ - \sqrt 3 }} = - \frac{{\sqrt {15} }}{3}\);

当\(m = - \sqrt 5 \)时,\(\cos \alpha = \frac{{ - \sqrt 3 }}{{\sqrt {3 + {m^2}} }} = - \frac{{\sqrt 6 }}{4}\),\(\tan \alpha = \frac{m}{{ - \sqrt 3 }} = \frac{{\sqrt {15} }}{3}\).


解析:




第518题



参考答案:\(\frac{{\cos (\pi + \alpha )\cos (\frac{\pi }{2} + \alpha )\cos (\frac{{11\pi }}{2} - \alpha )}}{{\cos (\pi - \alpha )\sin ( - \pi - \alpha )\sin (\frac{{9\pi }}{2} + \alpha )}} = \frac{{ - \cos \alpha \cdot ( - \sin \alpha ) \cdot ( - \sin \alpha )}}{{ - \cos \alpha \cdot \sin \alpha \cdot \cos \alpha }} = \tan \alpha = \pm \frac{{\sqrt {15} }}{3}\).


解析:




第519题



参考答案:\(f(\alpha ) = \frac{{\sin (\pi - \alpha )\cos (2\pi - \alpha )\sin ( - \alpha + \frac{{3\pi }}{2})}}{{\cos ( - \alpha - \pi )\cos ( - \alpha + \frac{{7\pi }}{2})}} = \frac{{\sin \alpha \cos \alpha ( - \cos \alpha )}}{{ - \cos \alpha ( - \sin \alpha )}} = - \cos \alpha \)


解析:




第520题



参考答案:由\(\cos (\alpha - \frac{{3\pi }}{2}) = \frac{1}{5}\),得\( - \sin \alpha = \frac{1}{5}\),\(\therefore \sin \alpha = - \frac{1}{5}\),

又\(\alpha \)是第三象限角,\(\cos \alpha = - \sqrt {1 - si{n^2}\alpha } = - \sqrt {1 - {{( - \frac{1}{5})}^2}} = - \frac{{2\sqrt 6 }}{5}\),

\(\therefore f(\alpha ) = \frac{{2\sqrt 6 }}{5}\).


解析:




进入题库练习及模拟考试