“微信扫一扫”进入考试题库练习及模拟考试

高中数学必修 第一册(648题)


第581题


A.13

B.15

C.17

D.19


参考答案:C


解析:


\(m=0\)时,取\(n=0,1,4\) ,方程为合格方程;



\(m=1\)时,取\(n=0,2,6\) ,方程为合格方程;



\(m=2\)时,取\(n=0,3\),方程为合格方程;



\(m=3\)时,取\(n=0,4\),方程为合格方程;



\(m=4\)时,取\(n=0,5\),方程为合格方程;



\(m=5\)时,取\(n=0,6\),方程为合格方程;



\(m=6\)时,取\(n=0,7\),方程为合格方程;



\(m=7\)时,取\(n=0\),方程为合格方程.



综上可得,合格方程的个数为17;



故选:C.



第582题


A.共有60种不同的坐法

B.空位不相邻的坐法有72种

C.空位相邻的坐法有24种

D.两端不是空位的坐法有27种


参考答案:AC


解析:

对于A,\({\rm{C}}_5^3{\rm{A}}_3^3 = \frac{{5 \times 4 \times 3}}{{3 \times 2 \times 1}} \times 3 \times 2 \times 1 = 60\),故正确;

对于B,\({\rm{A}}_3^3{\rm{C}}_4^2 = 3 \times 2 \times 1 \times \frac{{4 \times 3}}{{2 \times 1}} = 36\),故错误;

对于C,\({\rm{A}}_3^3 \times 4 = 3 \times 2 \times 1 \times 4 = 24\),故正确;

对于D,\(3 \times 2 \times 3 = 18\),故错误,

故选:AC.


第583题



参考答案:18


解析:

由题分析知,三个大人必各住一个房间,两个小孩可以同住三人间或三人间、两人间各一人,所以不同的安排方法有 \(A_3^3 \times \left( {1 + A_2^2} \right) = 18\) 种.


第584题


A.36

B.48

C.54

D.72


参考答案:D


解析:

由题意,如图,假设5个区域为分别为1、2、3、4、5,


分2种情况讨论:

\(①\)当选用3种颜色花卉的时,2、4同色且3、5同色,共有涂色方法 \({\rm{C}}_4^3 \cdot {\rm{A}}_3^3 = 24\) 种,

\(②\)当4种不同颜色的花卉全选时,即2、4或3、5用同一种颜色,共有 \({\rm{C}}_2^1 \cdot {\rm{A}}_4^4 = 48\) 种,

则不同的种植方法共有\(24 + 48 = 72\)种;

故选:D.


第585题


A.120

B.260

C.340

D.420


参考答案:D


解析:


由题意可知上下两块区域可以相同,也可以不同,



则共有 \(5 \times 4 \times 3 \times 1 \times 3 + 5 \times 4 \times 3 \times 2 \times 2 = 180 + 240 = 420\)



故选\(D\)



第586题



参考答案:偶数的个位数只能是2、4、6,有 \(A_3^1\) 种排法,其他位上有 \(A_6^3\) 种排法,

由分步乘法计数原理,知共有四位偶数 \({A}^{1}_{3}\cdot {A}^{3}_{6}=360\) (个);

能被5整除的数个位必须是5,故有 \({A}^{3}_{6}=120\)(个)


第587题



参考答案:最高位上是7时大于6500,有 \(A_6^3\) 种,

最高位上是6时,百位上只能是7或5,故有\(2\times {A}^{2}_{5}\) 种.

由分类加法计数原理知,这些四位数中大于6500的共有 \({A}^{3}_{6}+2\times {A}^{2}_{5}=160\)(个).


第588题

已知\(\sin {α}=\frac {1} {3}\),且\(α\in \left ( {\frac {π} {2},π} \right )\),则\(\frac {\sin {2α}} {\cos {2α+1}}\)(  )


A.\(-\frac {\sqrt {2}} {4}\)

B.\(2\sqrt {2}\)

C.\(-2\sqrt {2}\)

D.\(\sqrt {2}\)


参考答案:A


第589题

已知θ为锐角,且满足\(\frac {\tan {3θ}} {\tan {θ}}=11\),则tan2θ的值为(        )


A.\(\frac {3} {4}\)

B.\(\frac {4} {3}\)

C.\(\frac {2} {3}\)

D.\(\frac {3} {2}\)


参考答案:B




第592题

已知\(f(x)=2\sin {\left ( {x+\frac {π} {6}} \right )}\cos {x}-\frac {1} {2}\),且\(f\left ( {α} \right )=\frac {1} {3}\)\(α\in \left ( {\frac {π} {6},\frac {5π} {12}} \right )\),求cos2α的值.



参考答案:\(\because f(x)=2\sin {\left ( {x+\frac {π} {6}} \right )}\cos {x}-\frac {1} {2}=\sqrt {3}\sin {x\cos {x}}+\cos^{2} {x}-\frac {1} {2}=\frac {\sqrt {3}} {2}\sin {2x}+\frac {1} {2}\cos {2x}=\sin {\left ( {2x+\frac {π} {6}} \right )}\),\(f\left ( {α} \right )=\frac {1} {3}\),可得\(\sin {\left ( {2α+\frac {π} {6}} \right )}=\frac {1} {3}\),\(\because α\in \left ( {\frac {π} {6},\frac {5π} {12}} \right )\),可得\(2α+\frac {π} {6}\in \left ( {\frac {π} {2},π} \right )\),

\(\therefore \cos {\left ( {2α+\frac {π} {6}} \right )}=-\sqrt {1-\sin^{2} {\left ( {2α+\frac {π} {6}} \right )}}=-\frac {2\sqrt {2}} {3}\),\(\therefore \cos {2α}=\cos {\left ( {2α+\frac {π} {6}-\frac {π} {6}} \right )}=\cos {\left ( {2α+\frac {π} {6}} \right )}\cos {\frac {π} {6}}+\sin {\left ( {2α+\frac {π} {6}} \right )}\sin {\frac {π} {6}}=-\frac {2\sqrt {2}} {3}\times \frac {\sqrt {3}} {2}+\frac {1} {3}\times \frac {1} {2}=\frac {1-2\sqrt {6}} {6}\).


第593题

已知αβ∈(0,π),\(\cos {α=\frac {4} {5}}\)\(\sin {\left ( {α-β} \right )}=\frac {5} {13}\),求sin(α+β)的值.



参考答案:\(\because \cos {α=\frac {4} {5}}\),
\(\therefore \cos {2α=2\cos^{2} {α-1}}=\frac {7} {25}\).
∵α,β∈(0,π),
\(\cos {α}=\frac {4} {5}>0\),
\(\therefore 0<α<\frac {π} {2}\),
\(-π<α-β<\frac {π} {2}\).
又\(\because \sin {\left ( {α-β} \right )}=\frac {5} {13}\),
\(\therefore α-β\in \left ( {0,\frac {π} {2}} \right )\),
\(\therefore \cos {\left ( {α-β} \right )}=\frac {12} {13}\).
\(\therefore \sin {2α}=2\sin {α}\cos {α}=2\times \frac {3} {5}\times \frac {4} {5}=\frac {24} {25}\).
\(\therefore \sin {\left ( {α+β} \right )}=\sin {\left [ {2α-\left ( {α-β} \right )} \right ]}=\sin {2α}\cos {\left ( {α-β} \right )}-\cos {2α}\sin {\left ( {α-β} \right )}=\frac {24} {25}\times \frac {12} {13}-\frac {7} {25}\times \frac {5} {13}=\frac {253} {325}\).


第594题

\(\sin {74°=}m\),则\(\cos {8°=}\)(  )


A.\(\sqrt {\frac {1-m} {2}}\)

B.\(\pm \sqrt {\frac {1-m} {2}}\)

C.\(\sqrt {\frac {1+m} {2}}\)

D.\(\pm \sqrt {\frac {1+m} {2}}\)


参考答案:C


第595题

如果\(\left | {\cos {θ}} \right |=\frac {1} {5}\)\(\frac {5} {2}π<θ<3π\),那么\(\sin {\frac {θ} {2}}\)的值为(  )


A.\(\frac {\sqrt {10}} {5}\)

B.\(\frac {\sqrt {15}} {5}\)

C.\(-\frac {\sqrt {10}} {5}\)

D.\(-\frac {\sqrt {15}} {5}\)


参考答案:D



第597题

求证:\(\frac {\sin {4x}} {1+\cos {4x}}\cdot \frac {\cos {2x}} {1+\cos {2x}}\cdot \frac {\cos {x}} {1+\cos {x}}=\tan {\frac {x} {2}}\)



参考答案:证明:
左边\(=\frac {2\sin {2x\cos {2x}}} {2\cos^{2} {2x}}\cdot \frac {\cos {2x}} {2\cos^{2} {x}}\cdot \frac {\cos {x}} {2\cos^{2} {\frac {x} {2}}}
=\frac {\sin {2x}} {4\cos {x\cos^{2} {\frac {x} {2}}}}
=\frac {2\sin {x\cos {x}}} {4\cos {x\cos^{2} {\frac {x} {2}}}}
=\frac {\sin {x}} {2\cos^{2} {\frac {x} {2}}}
=\frac {2\sin {\frac {x} {2}\cos {\frac {x} {2}}}} {2\cos^{2} {\frac {x} {2}}}
=\tan {\frac {x} {2}}
=\)右边


第598题

证明:若α是第四象限角,则\(\sqrt {\frac {1+\sin {α}} {1-\sin {α}}}-\sqrt {\frac {1-\sin {α}} {1+\sin {α}}}=2\tan {α}\)



参考答案:证明:\(\frac {1+\sin {α}} {1-\sin {α}}=\frac {\left ( {1+\sin {α}} \right )^{2}} {\left ( {1-\sin {α}} \right )\left ( {1+\sin {α}} \right )}=\frac {\left ( {1+\sin {α}} \right )^{2}} {1-\left ( {\sin {α}} \right )^{2}}=\frac {\left ( {1+\sin {α}} \right )^{2}} {1-\cos^{2} {α}}\),因为α是第四象限的角,所以\(\cos {α>0}\),又因为\(\sin {α<-1}\),

所以\(1+\sin {α>0}\),所以\(\sqrt {\frac {1+\sin {α}} {1-\sin {α}}}=\frac {1+\sin {α}} {\cos {α}}\),同理\(\sqrt {\frac {1-\sin {α}} {1+\sin {α}}}=\frac {1-\sin {α}} {\cos {α}}\),所以\(\sqrt {\frac {1+\sin {α}} {1-\sin {α}}}-\sqrt {\frac {1-\sin {α}} {1+\sin {α}}}=\frac {1+\sin {α}} {\cos {α}}-\frac {1-\sin {α}} {\cos {α}}=2\frac {\sin {α}} {\cos {α}}=2\tan {α}\)

原式得证.


第599题

化简:\(\sqrt {\frac {1+\sin {α}} {1-\sin {α}}}-\sqrt {\frac {1-\sin {α}} {1+\sin {α}}}\)(α是第二、三象限角)(  ).


A.\(-\frac {2} {\cos {α}}\)

B.\(\frac {2} {\cos {α}}\)

C.\(-2\tan {α}\)

D.\(2\tan {α}\)


参考答案:C



进入题库练习及模拟考试