“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


已知αβ∈(0,π),\(\cos {α=\frac {4} {5}}\)\(\sin {\left ( {α-β} \right )}=\frac {5} {13}\),求sin(α+β)的值.



知识点:第五章 三角函数


参考答案:\(\because \cos {α=\frac {4} {5}}\),
\(\therefore \cos {2α=2\cos^{2} {α-1}}=\frac {7} {25}\).
∵α,β∈(0,π),
\(\cos {α}=\frac {4} {5}>0\),
\(\therefore 0<α<\frac {π} {2}\),
\(-π<α-β<\frac {π} {2}\).
又\(\because \sin {\left ( {α-β} \right )}=\frac {5} {13}\),
\(\therefore α-β\in \left ( {0,\frac {π} {2}} \right )\),
\(\therefore \cos {\left ( {α-β} \right )}=\frac {12} {13}\).
\(\therefore \sin {2α}=2\sin {α}\cos {α}=2\times \frac {3} {5}\times \frac {4} {5}=\frac {24} {25}\).
\(\therefore \sin {\left ( {α+β} \right )}=\sin {\left [ {2α-\left ( {α-β} \right )} \right ]}=\sin {2α}\cos {\left ( {α-β} \right )}-\cos {2α}\sin {\left ( {α-β} \right )}=\frac {24} {25}\times \frac {12} {13}-\frac {7} {25}\times \frac {5} {13}=\frac {253} {325}\).

进入考试题库