“微信扫一扫”进入题库练习及模拟考试
已知
参考答案:\(\because f(x)=2\sin {\left ( {x+\frac {π} {6}} \right )}\cos {x}-\frac {1} {2}=\sqrt {3}\sin {x\cos {x}}+\cos^{2} {x}-\frac {1} {2}=\frac {\sqrt {3}} {2}\sin {2x}+\frac {1} {2}\cos {2x}=\sin {\left ( {2x+\frac {π} {6}} \right )}\),\(f\left ( {α} \right )=\frac {1} {3}\),可得\(\sin {\left ( {2α+\frac {π} {6}} \right )}=\frac {1} {3}\),\(\because α\in \left ( {\frac {π} {6},\frac {5π} {12}} \right )\),可得\(2α+\frac {π} {6}\in \left ( {\frac {π} {2},π} \right )\),
\(\therefore \cos {\left ( {2α+\frac {π} {6}} \right )}=-\sqrt {1-\sin^{2} {\left ( {2α+\frac {π} {6}} \right )}}=-\frac {2\sqrt {2}} {3}\),\(\therefore \cos {2α}=\cos {\left ( {2α+\frac {π} {6}-\frac {π} {6}} \right )}=\cos {\left ( {2α+\frac {π} {6}} \right )}\cos {\frac {π} {6}}+\sin {\left ( {2α+\frac {π} {6}} \right )}\sin {\frac {π} {6}}=-\frac {2\sqrt {2}} {3}\times \frac {\sqrt {3}} {2}+\frac {1} {3}\times \frac {1} {2}=\frac {1-2\sqrt {6}} {6}\).