“微信扫一扫”进入题库练习及模拟考试
已知
若
参考答案:若\(f(\frac{\pi }{3} - \alpha ) = \frac{1}{3}\),则\(\cos (\frac{\pi }{3} - \alpha ) = \frac{1}{3}\),
\(\therefore \)\({\cos^{2}}(\frac {\pi } {6}+\alpha )={\cos^{2}}\left [ {\frac {\pi } {2}-(\frac {\pi } {3}-\alpha )} \right ]={\sin^{2}}(\frac {\pi } {3}-\alpha )=1-{\cos^{2}}(\frac {\pi } {3}-\alpha )=1-\frac {1} {9}=\frac {8} {9}\),
\(\cos {(}\frac {2\pi } {3}+\alpha )=\cos {\left [ {\pi -(\frac {\pi } {3}-\alpha )} \right ]}=-\cos {(}\frac {\pi } {3}-\alpha )=-\frac {1} {3}\),
则 \({\cos ^2}(\frac{\pi }{6} + \alpha ) + \cos (\frac{{2\pi }}{3} + \alpha ) = \frac{8}{9} - \frac{1}{3} = \frac{5}{9}\).
解析: