“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


已知 \(f(\alpha ) = \frac{{\sin (\frac{\pi }{2} + \alpha )\cos (\pi + \alpha )\sin ( - \alpha )}}{{\sin (\frac{{3\pi }}{2} - \alpha )\cos (2\pi - \alpha )\tan (\pi - \alpha )}}\)


\(f(\frac{\pi }{3} - \alpha ) = \frac{1}{3}\),求\({\cos ^2}(\frac{\pi }{6} + \alpha ) + \cos (\frac{{2\pi }}{3} + \alpha )\)的值.



知识点:第五章 三角函数


参考答案:若\(f(\frac{\pi }{3} - \alpha ) = \frac{1}{3}\),则\(\cos (\frac{\pi }{3} - \alpha ) = \frac{1}{3}\),

\(\therefore \)\({\cos^{2}}(\frac {\pi } {6}+\alpha )={\cos^{2}}\left [ {\frac {\pi } {2}-(\frac {\pi } {3}-\alpha )} \right ]={\sin^{2}}(\frac {\pi } {3}-\alpha )=1-{\cos^{2}}(\frac {\pi } {3}-\alpha )=1-\frac {1} {9}=\frac {8} {9}\),

\(\cos {(}\frac {2\pi } {3}+\alpha )=\cos {\left [ {\pi -(\frac {\pi } {3}-\alpha )} \right ]}=-\cos {(}\frac {\pi } {3}-\alpha )=-\frac {1} {3}\),

则 \({\cos ^2}(\frac{\pi }{6} + \alpha ) + \cos (\frac{{2\pi }}{3} + \alpha ) = \frac{8}{9} - \frac{1}{3} = \frac{5}{9}\).


解析:



进入考试题库