“微信扫一扫”进入考试题库练习及模拟考试

高中数学必修 第一册(648题)


第481题



参考答案:\((\frac{\pi }{4},\frac{{3\pi }}{4})\bigcup {(\frac{{5\pi }}{4},\frac{{7\pi }}{4})} \)


第482题



参考答案:①当 \(m > 0\) 时, \(r = \sqrt {{m^2} + 8{m^2}} = 3m\),

\(\sin {\theta }=\frac {2\sqrt {2}m} {3m}=\frac {2\sqrt {2}} {3},\cos {\theta }=\frac {m} {3m}=\frac {1} {3},\tan {\theta }=\frac {2\sqrt {2}m} {m}=2\sqrt {2}\).

②当 \(m < 0\) 时,\(r = \sqrt {{m^2} + 8{m^2}} = - 3m\),

有 \(\sin {\theta }=\frac {2\sqrt {2}m} {-3m}=-\frac {2\sqrt {2}} {3},\cos {\theta }=\frac {m} {-3m}=-\frac {1} {3},\tan {\theta }=\frac {2\sqrt {2}m} {m}=2\sqrt {2}\).



第484题

如果点\(P\left ( {2\sin {θ,\sin {θ\cdot \cos {θ}}}} \right )\)位于第四象限,那么角\(θ\)所在象限为(  )


A.第一象限

B.第二象限

C.第三象限

D.第四象限


参考答案:B


第485题

利用单位圆和三角函数线,求满足条件\(\left \{ \begin{gathered} {\cos {x\leq -\frac {\sqrt {2}} {2}}} \\ {\sin {x\geq \frac {1} {2}}} \end{gathered} \right .\)成立的\(x\)的集合.



参考答案:单位圆中的三角函数线同时

满足\(\sin {x\geq \frac {1} {2}},\cos {x\leq -\frac {\sqrt {2}} {2}}\)的\(x\)是\(\left \{ \begin{gathered} {2kπ+\frac {π} {6}\leq x\leq 2kπ+\frac {5π} {6}} \\ {2kπ+\frac {3π} {4}\leq x\leq 2kπ+\frac {5π} {4}} \end{gathered} \right .\),

\(k\in Z\);

即\(x\)的取值范围是\(\left \{ {x|2kπ+\frac {3π} {4}\leq x\leq 2kπ+\frac {5\pi } {6},k\in Z} \right \} \).





第489题 求证: \(2\left ( {1-\sin {α}} \right )\left ( {1+\cos {α}} \right )=\left ( {1-\sin {α+\cos {α}}} \right )^{2}\)



参考答案:证明:
左边=\(2-2\sin {α}+2\cos {α-2\sin {α}}\cos {α}\)
\(=1+\sin^{2} {α}+\cos^{2} {α}-2\sin {α\cos {α+2\left ( {\cos {α-\sin {α}}} \right )}}\)
\(=1+2\left ( {\cos {α-\sin {α}}} \right )+\left ( {\cos {α-\sin {α}}} \right )^{2}\)
=\(\left ( {1-\sin {α+\cos {α}}} \right )^{2}\)
= 右边


第490题



参考答案:(1)在单位圆中,有 \({S_{\Delta OAN}} < {S_{扇形OAN}} < {S_{\Delta ONT}}\),\(\therefore \)\(\frac{1}{2}ON \cdot MA < \frac{1}{2}ON \cdot x < \frac{1}{2}ON \cdot NT\), 即\(MA < x < NT\), 又 \(\sin x = MA\),\(\cos x = OM\),\(\tan x = NT\),\(\therefore \sin x < x < \tan x\);


解析:




第491题

\(\sin {\frac {1} {2}}\cdot \sin {\frac {2} {3}}\cdot \sin {\frac {3} {4}}\cdot \cdots \cdot \sin {\frac {2010} {2011}}<\frac {1} {2010}\)



参考答案:

(2)\(\because \)\(\frac {1} {2},\frac {2} {3},\frac {3} {4},\frac {2010} {2011}\) 均为小于 \(\frac{\pi }{2}\) 的正数, \(\sin \frac {1} {2}<\frac {1} {2},\sin \frac {2} {3}<\frac {2} {3},\sin \frac {3} {4}<\frac {3} {4},\sin \frac {2010} {2011}<\frac {2010} {2011}\) 



将以上2010道式相乘得\(\sin {\frac {1} {2}}\cdot \sin {\frac {2} {3}}\cdot \sin {\frac {3} {4}}\cdot \cdots \cdot \sin {\frac {2010} {2011}}<\frac {1} {2}\cdot \frac {2} {3}\cdot \frac {3} {4}\cdots \frac {2010} {2011}=\frac {1} {2011}<\frac {1} {2010}\)



\(\sin {\frac {1} {2}}\cdot \sin {\frac {2} {3}}\cdot \sin {\frac {3} {4}}\cdot \cdots \cdot \sin {\frac {2010} {2011}}<\frac {1} {2010}\)




解析:




第492题



参考答案:\(\frac {\sin {760°}} {\sqrt {1-\cos^{2} {40°}}}=\frac {\sin {\left ( {2\times 360°+40°} \right )}} {\sqrt {\sin^{2} {40°}}}=\frac {\sin {40°}} {\left | {\sin {40°}} \right |}=\frac {\sin {40°}} {\sin {40°}}=1\)


解析:




第493题



参考答案:\(\tan {α\sqrt {\frac {1} {\sin^{2} {α}}-1}}=\tan {α}\sqrt {\frac {1-\sin^{2} {α}} {\sin^{2} {α}}}=\tan {α\sqrt {\frac {\cos^{2} {α}} {\sin^{2} {α}}}}=\frac {\sin {α}} {\cos {α}}\cdot \frac {-\cos {α}} {\sin {α}}=-1\)


解析:






第496题



参考答案:\(-\frac {2} {\sin {x}}\)且\(x\ne 2k\pi +\frac {\pi } {2}(k\in Z)\)



第498题



参考答案:左边\( = ({\sin ^2}\alpha - {\cos ^2}\alpha )({\sin ^2}\alpha + {\cos ^2}\alpha ) = {\sin ^2}\alpha - {\cos ^2}\alpha = {\sin ^2}\alpha - (1 - {\sin ^2}\alpha ) = 2{\sin ^2}\alpha - 1 = \) 右边


解析:




第499题



参考答案:左边 \( = {\sin ^2}\alpha (1 - {\sin ^2}\beta ) + {\sin ^2}\beta + {\cos ^2}\alpha {\cos ^2}\beta \) \(={\sin^{2}}\alpha {\cos^{2}}\beta +{\sin^{2}}\beta +{\cos^{2}}\alpha {\cos^{2}}\beta \)

\( = {\cos ^2}\beta ({\sin ^2}\alpha + {\cos ^2}\alpha ) + {\sin ^2}\beta \) \( = {\cos ^2}\beta + {\sin ^2}\beta \) \( = 1\) \( = \) 右边


解析:




第500题



参考答案:由 \(\cos x + \sin x = \frac{1}{5}\) ,两边平方得: \(co{s^2}x + si{n^2}x + 2\cos x\sin x = \frac{1}{{25}}\)

\(\therefore \) \(1 + 2\cos x\sin x = \frac{1}{{25}}\) 即 \(\cos x\sin x = - \frac{{12}}{{25}}\)

\(\because \cos x\sin x < 0\) 且 \(-\pi <x<0,\therefore x\) 为第四象限角.


解析:




进入题库练习及模拟考试