“微信扫一扫”进入考试题库练习及模拟考试
第481题
若
参考答案:\((\frac{\pi }{4},\frac{{3\pi }}{4})\bigcup {(\frac{{5\pi }}{4},\frac{{7\pi }}{4})} \)
参考答案:①当 \(m > 0\) 时, \(r = \sqrt {{m^2} + 8{m^2}} = 3m\),
\(\sin {\theta }=\frac {2\sqrt {2}m} {3m}=\frac {2\sqrt {2}} {3},\cos {\theta }=\frac {m} {3m}=\frac {1} {3},\tan {\theta }=\frac {2\sqrt {2}m} {m}=2\sqrt {2}\).
②当 \(m < 0\) 时,\(r = \sqrt {{m^2} + 8{m^2}} = - 3m\),
有 \(\sin {\theta }=\frac {2\sqrt {2}m} {-3m}=-\frac {2\sqrt {2}} {3},\cos {\theta }=\frac {m} {-3m}=-\frac {1} {3},\tan {\theta }=\frac {2\sqrt {2}m} {m}=2\sqrt {2}\).
A.\(\sqrt {3}\)
B.\(-\sqrt {3}\)
C.\(\sqrt {2}\)
D.\(-\sqrt {2}\)
参考答案:D
第484题
如果点
A.第一象限
B.第二象限
C.第三象限
D.第四象限
参考答案:B
参考答案:单位圆中的三角函数线同时
满足\(\sin {x\geq \frac {1} {2}},\cos {x\leq -\frac {\sqrt {2}} {2}}\)的\(x\)是\(\left \{ \begin{gathered} {2kπ+\frac {π} {6}\leq x\leq 2kπ+\frac {5π} {6}} \\ {2kπ+\frac {3π} {4}\leq x\leq 2kπ+\frac {5π} {4}} \end{gathered} \right .\),
\(k\in Z\);
即\(x\)的取值范围是\(\left \{ {x|2kπ+\frac {3π} {4}\leq x\leq 2kπ+\frac {5\pi } {6},k\in Z} \right \} \).
参考答案:1
参考答案:\( - 1\)
参考答案:证明:
左边=\(2-2\sin {α}+2\cos {α-2\sin {α}}\cos {α}\)
\(=1+\sin^{2} {α}+\cos^{2} {α}-2\sin {α\cos {α+2\left ( {\cos {α-\sin {α}}} \right )}}\)
\(=1+2\left ( {\cos {α-\sin {α}}} \right )+\left ( {\cos {α-\sin {α}}} \right )^{2}\)
=\(\left ( {1-\sin {α+\cos {α}}} \right )^{2}\)
= 右边
第490题
参考答案:(1)在单位圆中,有 \({S_{\Delta OAN}} < {S_{扇形OAN}} < {S_{\Delta ONT}}\),\(\therefore \)\(\frac{1}{2}ON \cdot MA < \frac{1}{2}ON \cdot x < \frac{1}{2}ON \cdot NT\), 即\(MA < x < NT\), 又 \(\sin x = MA\),\(\cos x = OM\),\(\tan x = NT\),\(\therefore \sin x < x < \tan x\);
解析:
参考答案:
(2)
将以上2010道式相乘得
即
解析:
第492题
参考答案:\(\frac {\sin {760°}} {\sqrt {1-\cos^{2} {40°}}}=\frac {\sin {\left ( {2\times 360°+40°} \right )}} {\sqrt {\sin^{2} {40°}}}=\frac {\sin {40°}} {\left | {\sin {40°}} \right |}=\frac {\sin {40°}} {\sin {40°}}=1\)
解析:
第493题
参考答案:\(\tan {α\sqrt {\frac {1} {\sin^{2} {α}}-1}}=\tan {α}\sqrt {\frac {1-\sin^{2} {α}} {\sin^{2} {α}}}=\tan {α\sqrt {\frac {\cos^{2} {α}} {\sin^{2} {α}}}}=\frac {\sin {α}} {\cos {α}}\cdot \frac {-\cos {α}} {\sin {α}}=-1\)
解析:
参考答案:\(-\frac {2} {\sin {θ}}\)
参考答案:\(-\frac {2} {\sin {x}}\)且\(x\ne 2k\pi +\frac {\pi } {2}(k\in Z)\)
参考答案:\(\frac {\pi } {3}\)
第498题
求证:
参考答案:左边\( = ({\sin ^2}\alpha - {\cos ^2}\alpha )({\sin ^2}\alpha + {\cos ^2}\alpha ) = {\sin ^2}\alpha - {\cos ^2}\alpha = {\sin ^2}\alpha - (1 - {\sin ^2}\alpha ) = 2{\sin ^2}\alpha - 1 = \) 右边
解析:
参考答案:左边 \( = {\sin ^2}\alpha (1 - {\sin ^2}\beta ) + {\sin ^2}\beta + {\cos ^2}\alpha {\cos ^2}\beta \) \(={\sin^{2}}\alpha {\cos^{2}}\beta +{\sin^{2}}\beta +{\cos^{2}}\alpha {\cos^{2}}\beta \)
\( = {\cos ^2}\beta ({\sin ^2}\alpha + {\cos ^2}\alpha ) + {\sin ^2}\beta \) \( = {\cos ^2}\beta + {\sin ^2}\beta \) \( = 1\) \( = \) 右边
解析:
第500题
求
参考答案:由 \(\cos x + \sin x = \frac{1}{5}\) ,两边平方得: \(co{s^2}x + si{n^2}x + 2\cos x\sin x = \frac{1}{{25}}\)
\(\therefore \) \(1 + 2\cos x\sin x = \frac{1}{{25}}\) 即 \(\cos x\sin x = - \frac{{12}}{{25}}\)
\(\because \cos x\sin x < 0\) 且 \(-\pi <x<0,\therefore x\) 为第四象限角.
解析: