“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


已知\(\sin {x+\cos {x=\frac {1} {5}}},-\pi <x<0\)


\(\tan x\)的值.



知识点:第五章 三角函数


参考答案:\(\because \left ( {\sin {x-\cos {x}}} \right )^{2}=1-2\cos {x}\sin {x}=\frac {49} {25}\),

\(\therefore \)\(\sin x - \cos x = \pm \frac{7}{5}\)

\(\because x\)为第四象限角, \(\sin x < 0\) ,\(\cos x > 0\)

\(\therefore \sin {x}-\cos {x}<0,\therefore \sin {x}-\cos {x}=-\frac {7} {5}\),联立\(\cos {x}+\sin {x}=\frac {1} {5}\)得:\(\left \{ \begin{array}{*{20}{l}} {\sin {x}=-\frac {3} {5}} \\ {\cos {x}=\frac {4} {5}} \end{array} \right .\)

\(\therefore \)\(\tan x = \frac{{\sin x}}{{\cos x}} = - \frac{3}{4}\).


解析:



进入考试题库